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Detecting genuine multipartite continuous-variable entanglement
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We derive necessary conditions in terms of the variances of position and momentum linear combinations for
all kinds of separability of a multiparty multimode continuous-variable state. Their violations can be sufficient
for genuine multipartite entanglement, provided the combinations contain both conjugate variables of all
modes. Hence, a complete state determination, for example, by detecting the entire correlation matrix of a
Gaussian state, is not needed.
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[. INTRODUCTION bined at an asymmetric 1:2 beam splitter. The output three-
mode state after an additional symmetric beam splitter was
Quantum entanglement shared by two parties enhanceken similar to the states proposed in RéfL].
their capabilities to communicate. In principle, it allows  Quantum communication, or more general quantum infor-
them to convey quantum information reliably through a clas-mation with CV has attracted a lot of interest due to the
sical channel(quantum teleportatiorf1]), to double the relative simplicity and high efficiency in the generation, ma-
amount of classical information transmittable through a clasnipulation, and detection of optical CV states. Although re-
sical channelquantum dense codif@]), or to prepare at a cent results suggest that these assets of Gaussian CV opera-
distance states from nonorthogonal bases for secure commtiens (phase shifting, beam splitting, homodyne detections,
nication (quantum key distribution [3-5]). These phase-space displacements, and squegzrg not extend-
entanglement-assisted communication schemes are exteritile to more advanced quantum protocols such as entangle-
ible to an arbitrary number of parties sharing multipartitement distillation[12—14], the simple and efficient CV ap-
entanglement. For instance, a sender may transfer quantupnoach still seems promising for many tasks and might be
information through classical channels to several receivers asuitable for others too when combined with discrete-variable
reliably as allowed by optimal clonin¢elecloning[6]), or  (DV) strategies. On the other hand, potential linear-optics
the parties may share quantupr classical information re-  implementations of quantum protocols solely based on DV
trievable only when all parties cooperatguantum secret utilizing single photons are restricted by No-Go results such
sharing[7]). A more recent proposal that exploits the multi- as the impossibility of a complete distinction between the
party quantum correlations of multipartite entangled states ifour Bell stateq15]. In order to perform such a Bell mea-
the so-called Byzantine agreement proto@l In general, surement near perfectly with linear optics, one has to employ
the presence of entanglement is verified through the successmplicated entangled states of many auxiliary phofdés
of a quantum protocol that would fail otherwige.g., quan- In contrast, a Bell and also a Greenberger-Horne-Zeilinger
tum teleportation Such an operational criterion is only suf- (GHZ) state analyzer can be easily constructed in the CV
ficient for entanglement, and failure does not necessarily rulsetting using only beam splitters and homodyne detectors
out its presence. In an experimental realization, however, bd17-19.
fore running through an entire entanglement-based protocol, How may one now verify experimentally the presence of
it is desirable first to confirm that the generation of sophisti-entanglement without implementing a full quantum proto-
cated multiparty entangled states has succeeded. The aim @l? We are here, particularly, concerned about the experi-
this paper is to provide a simple but unambiguous experimental verification of genuinely multipartite entangled states
mental test to check for a particular kind of genuinely mul-where none of the parties is separable from any other party
tipartite entangled states, namely, those described by coiin terms of the separability properties of the total density
tinuous variablegCV), and produced with squeezed light matrix). In general, theoretical tests might be as well appli-
and linear optics. cable to the experimental verification. For instance, the vio-
Work in the direction of generating tripartite CV entangle- lation of inequalities imposed by local realism confirms the
ment has been carried out already by sending one half of presence of entanglement. Proving genuine multipartite en-
two-mode two-party entangled state through an extra bearranglement, however, requires stronger violatippg| than
splitter with a coherent state or a vacuum state at its secorithiose determined by the commonly used Mermin-Klyshko
input port[9,10]. The resulting three-mode state was a sideN-party inequalitieg21,22. Moreover, in any case, viola-
product of the Bell measurement for the teleportation of cotions of Bell-type inequalities using the Gaussian CV en-
herent states using a preshared symmetric two-mod&angled states with always positive Wigner functions must
squeezed staf@]. Its tripartite entanglement was not further rely on observables other than the quadratyres, position
investigated in this experiment. In another experiment, reand momentum Photon number parity may serve as an ap-
ported recently{10], the two-mode state was asymmetric, propriate dichotomic variable to reveal the nonlocality of the
corresponding to two independently squeezed states conGV entangled state®3]. This applies to the two-party two-
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mode EPR-like[23] and to theN-party N-mode GHZ-like  with the 2NX2N matrix A having the 2<2 matrix J as
CV stateq 24]. Such an approach, however, is not very fea-diagonal entry for each quadrature pair, for example,Nor
sible due to its need for detectors resolving large photon=2,

numbers.
The negative partial transpo@ePT) criterion[25] is nec- J 0 0 1
essary and sufficient for the bipartite inseparability of (2 A= o 3" \21 o ®)

X 2)-dimensional, (X 3)-dimensional[26], and (1XN)-

mode Gaussian stat¢27,28. A complete experimental de- A direct consequence of this commutation relation and the

termination of the state in question would also enable an - . A
) . X non-negativity of the density operatpris the N-mode un-

NPT check. In general, any theoretical test is appllcableCertaint relatior{ 27,28

when the experimentalist has full information about the y e

guantum state after measurements on an ensemble of identi- i

cally prepared stateg.g., by quantum tomography29]). vIN_ _A=0. (6)

Such adirect verification of entanglement via a complete 4

state measurement is in general very demanding to the ex-

. L . - i ition i i (N)
perimentalist, in particular, when the state to be determinedlOte that this condition is equivalent 8™ +iA/4=0 by
is a potentially multiparty entangled multimode state. complex conjugation. As for the direct verification of en-
tanglement via a complete state measurement, for the Gauss-

ian CV states, the complete measurement ofNaparty,
N-mode quantum state is accomplished by determining the

The multiparty entanglement criteria that we will derive 2N 2N second-moment correlation matrix. This corre-
here do not rely on the assumption of Gaussian states. Hovgponds tdN(1+2N) independent entries taking into account
ever, the states commonly produced in the laboratory arthe symmetry of the correlation matrix. Kiet al. [32] re-
indeed Gaussian and the theoretical classification of differergently demonstrated how to determine all these entries in the
types of multipartite entanglement becomes simpler fotwo-party, two-mode case using beam splitters and homo-
Gaussian statds0]. dyne detectors. Joint homodyne detections of the two modes

Since the entanglement properties of a multimode, multiyield the intermode correlations such @gX,) — (X1 )(X,),
party state are invariant under local phase-space d|splac§§152>_<;(l><f,2>, etc. Determining the local intramode cor-

\TVieanZ'r tfzicr:i]grlflgc:g‘ihsga}t)er?nmay have zero mean and thelg . iions sych agx,py+ P1X1)/2— (X, )(py) is more subtle
9 and requires additional beam splitters and homodyne detec-
tions (or, alternatively, heterodyne detectipn©nce the 4
1 exp{ _ Eg[V(N)]—lgT], (1) X4 two-mode correlation matrix is known, the NPT crite-
(2m)N\detv™ 2 rion can be applied as a necessary and sufficient condition
for bipartite Gaussian two-mode inseparabilityhnere NPT
with the 2N-dimensional vectoré having the quadrature corresponds to a sign change of all the momentum variables

Il. GAUSSIAN STATES

W(¢)=

pairs of allN modes as its components, with positions unchangd@7]). In fact, the entanglement can
also be quantified for a given correlation mat82,33. For
E=(X1,P1,X2,P2, - - - Xn,PN)s three-party three-mode Gaussian states, one may pursue a
similar strategy. After measuring the 21 independent entries
E=(X1,P1,X2,P2, - - - Xn PN (2)  of the correlation matrix(for example, by extending the

scheme of Kimet al. [32] to the three-mode cagehe nec-
and with the Nx 2N correlation matrixV(N) having as its essary and sufficient criteria by Giedlet al. [30] can be
elements the second moments symmetrized according to tlemplied. Let us examine the separability properties(inf
Weyl correspondencis1], particular, three-party, three-mod&aussian states in more
detail.
Trp(AEAE+AEAE)2]=((&&+ §i€)/2)
Ill. SEPARABILITY PROPERTIES OF GAUSSIAN STATES

_ £ 42N
_f W(§)&i£,d77¢ The criteria by Giedkeet al. [30] determine to which of

five possible classes of fully and partially separable, and
fully inseparable states a three-party, three-mode Gaussian
R, state belongs. Hence, genuine tripartite entanglement if
whereA & = &— (&)= ¢; for zero mean values. Note that the present can be unambiguously identified. The classification is
correlation matrix of any physical state must be real, symmainly based on the NPT criterion for CV states. Transposi-
metric, positive, and must obey the commutation relatiortion is a positive map that corresponds in phase space to a
(27,28, sign change of all momentum variableg! —T'¢"=(x,,
—P1,X2,— P2, .- . Xn,—Pn) ' [27]. In terms of the correla-
tion matrix, we have thet™—T'VNT . Since transposi-
tion is not a completely positive map, its partial application

(Bodil=gAn, kI=123..2, @
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to a subsystem only may yield an unphysical state when thstates. Class 5 contains the fully separable states. A Gaussian
subsystem was entangled to other subsystems. Expressistate described by®) is fully separable iff one-mode corre-
partial transposition of a bipartite Gaussian systemIQy |ation matricesV{?, V&, and V{ exist such thatv(®
=I'el (whereA®B means the block-diagonal matrix with =vV{VeVviPeV{ . In general, fully separable quantum

the matricesA andB as diagonal “entries,” andh andB are,  giates can be written as a mixture of tripartite product states,

respectively, AX2N and 2V X2M square matrices appli- S o @ @ in ol 5 h h q

cable toN modes at’s side andM modes ab’s side, the =i 7iPi1¥Pi2®¥piz. [N ClAss <, we have ne one-mode
Jiseparable states, where only one particular mode is sepa-

condition that the partially transposed Gaussian state déJ . . . i
scribed by T,VN*MT_ is unphysical [see Eq. (6)], rable from the remaining pair of modes. This means in the

i Gaussian case that only for one particular mdgev®
V(NI 7. is sufficient for the inseparability be- =VMeVE with some two-mode correlation matrix(?)

. ) ; (1)
tweena and b [27,28. For the Gaussian states wibh=1 and one-mode correlation matri~’. In general, such a

and an arbitranM, this condition is necessary and sufficient state can be written as; 77i;7i,k®;7i,mn for one modek. Class
[28]. The simplest example where the condition is no longel3 contains those states where two, but not three, bipartite
necessary for inseparability involves two modes at each sidgplittings are possible, i.e., two different modeandm are
N=M=2. In this case, states with positive partial transpos&eparable from the remaining pair of modéso-mode
(bound entangled Gaussian statesist[28]. For the general hiseparable statpsThe states of class @hree-mode bisepa-
bipartiteNX M case, there is also a necessary and sufficientaple statescan be written as a mixture of products between
condition: the correlation matri)\/(N+M) Corresponds to a any mode 1,2,0r3 and the remaining pair of modes’ but not
separable state if and only (ifff) a pair of correlation matri- 55 3 mixture of three-mode product states. Obviously, classes
ces VYV and V(" exists such thav™"M=vVWeV(™ 4 and 5 are not distinguishable via the NPT criterion. An
[28]. Since it is, in general, hard to find such a pair of cor-aqditional criterion for this distinction of class 4 and 5
relation matricesv{") and Vi for a separable state or to Gaussian states is given in Rg20], deciding whether one-
prove th_e nqnexistgnce of such a pair for an inseparablﬁhode correlation matricev(ll), V(Zl)’ and V(31) exist such
state, this criterion is not very practical. A more practical, . VA=V vWe Ve For the identification of genu-

solution was provided in Ref34]. The operational criteria inely tripartite entangled Gaussian states, only class 1 has to

there, computable and testable via a finite number of itera- =7 .~ ™" " o
tions, are entirely independent of the NPT criterion. The;a/bﬁ)nd::l:'f%lés:m from the rest. Hence, the NPT criterion

rely on a nonlinear map between the correlation matrice& hat ab han th ) d modes? ;
rather than a linear one such as the partial transposition, and /hat about more than three parties and modes? Even for

in contrast to the NPT criterion, they witness also the insepa@nly four parties and modes, the separability issue becomes
rability of bound entangled states. Thus, the separabilitynore subtle. The one-mode bipartite splittings,7;p; kim
problem for bipartite Gaussian states with arbitrarily manyg p, ., can be tested and possibly ruled out via the NPT

modes at each side is completely solved. For three-partyriterion with respect to any mode In the Gaussian lan-
three-mode Gaussian states, the only partially separable i

i
forms are those with a bipartite splitting ofx<I2 modes. guage, ifV{)# 2/ for anyn, the state cannot be written in

Hence, already the NPT criterion is necessary and SUfﬂc'en%he above form. Since we consider here the bipartite splitting

[3O§he classification of tripartite three-mode Gaussian stategf 1x3 modes, the NPT condition is necessary and suffi-

cient for the Gaussian states. However, also a state of the

. i i form %, 77i13i,k|®;7i,mn leads to negative partial transpose with
class1: VP®# A V% _A,V?);é —A, respect to any of the four modes when the two paltd)(

4 4 and (m,n) are each entangled. Thus, NPT with respect to
any individual mode is necessary but not sufficient for genu-

i i i ine four-party entanglement. One has to consider also the
class2: V= A V% A VE% A, partial transposition with respect to any pair of modes. For
this 2X2 mode case, however, we know that entangled
Gaussian states with positive partial transpose ¢2Bj but
i the NPT criterion is still sufficient for the inseparability be-
tween any two pairs. As for a necessary and sufficient con-
dition, one can use those from RE34]. In any case, in order
) ) to confirm genuine four-party or evé¥irparty entanglement,

class 4 or5; Vi®= I—A,V(3)> I—A,V(3)> LA, (7 ©onehastorule out any possible partially separable form. In
4 4 principle, this can be done by considering all possible bipar-
tite splittings (or grouping$ and applying either the NPT
is solely based on the NPT criterion, WheT'E’EFjV“)Fj criterion or the stronger operational criteria from R4
denotes the partial transposition with respect to one njode Although a full theoretical characterization including criteria
In classes 2 and 3, any permutation of modesn;n) must  for entanglement classification has not been considered yet
be considered. Class 1 corresponds to the fully inseparabfer more than three parties and modes, the presence of genu-
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ine multipartite entanglement can be confirmed, once théwhen they are zejaand hence render the condition, E§),
complete X 2N correlation matrix is given. necessary and sufficient for separability. In any case, it
Rather than detecting all the entries of the correlation mawould also enable quantification of the entanglenidg;33.
trix, we are aiming here at a simple check based on only a The combinations in condition, E¢8), are exactly those
few measurements, preferably efficient homodyne detecdetected in a CV Bell measurement of modes 1 ard7.
tions. Even for larger numbers of parties, this check shouldhus, the verification of nonmaximum two-mode CV en-
remain simple. Though it may not yield full information tanglement may rely on measurements of .observables that
(e.g., the complete correlation matrigbout the quantum &€ detepted for the projection onto Fhe m{;mmally entangled
state of interest, it should still unambiguously verify the CV basis of two modes. Now, we investigate theparty,

presence of genuine multipartite entanglement. This checI}"mOde case in this respect.

may prove the presence of entanglemigntirectly through

measurements after transforming the relevant state first into V. THE CV GHZ BASIS

an appropriate form via linear optics. Let us introduce the maximally entangled states
|W(v,uq,u u )>=i ) dxeXx)®|x—uy)
IV. DETECTING ENTANGLEMENT: BIPARTITE CASE U, U2, - UN- \/; e 1

In the two-party, two-mode case, the necessary separabil- BX—U;—U)®- - ® [x—U
ity condition for any CV stat¢35] o !
—Up;— -+ —Un-1). 9

L o L Since [Z_.dx|x)(x|=1 and (x|x")= 8(x—x"), they form a
([A(X1=X2) I +{[A(P1+P2)12)=2[([x,p])], (8) complete,

foc dv dudu,- - -duy_4
can be tested, for example, with a single beam splitter. The o
position and momentum variables and p; (units free with X|W¥(v,ug,Up, ... Un_1))
h=3%, i.e.,[fq ,E)k]=_i Sil2) cor_respond to the q_uadrz_itures of X (W (v,Up, Uy, . .. Uy_1)| =1V, (10)
two electromagnetic modes, i.e., the real and imaginary parts
of the annihilation operators of the two modes=%,  and orthogonal,

+ip,. The beam splitter provides the suitable quadrature (W (v,uy,
combinations for the positions and momenta, simultaneously
detectable at the two output ports. Without beam splitter, just ~ =8(v—v')S(U;—Uu7)S(Us—U3) - - - S(Uny_1—UN_1),
by measuring first both positions and subtracting them elec- (11)
tronically, and in a second step, detecting both momenta and
combining these electronical[86], a more direct test of the set of basis states fdd modes. In a “CV GHZ state ana-
two-party condition is possible. However, instead of a simul-lyzer,” determining the quantities=p;+p,+---+py.,
taneous detection of the relevant combinations, it requireg,=x; —x,, u,=x,—Xs, . .., anduy_;=Xy_1— Xy Means
switching the two local oscillator phases from position toprojecting onto the basi§| ¥ (v,u;,Uy, ... Uy_1))}. This
momentum measurements. For an ensemble of identicallyan be accompﬁshed with a sequence of beam Sp”tters and
prepared states, this sequence of detections would still enabigymodyne detectiongl8,19. Inferring from the two-party

the application of the two-party condition. Note that the vio- case, we may conjecture that tNequadrature combinations
lation of Eq.(8) is only sufficient for inseparability, i.e., there given byv,u;,u,, ... Uy_; provide a sufficient set of ob-
are(even GaussianCV entangled states that satisfy E8).  servables for the verification apossibly genuineN-party

Any Gaussian CV state, however, can be transformed vigntanglement. Just as for two parties, the variances of these
local operations into a standard form, and the presence Qfuantities could then also be determined by combining the
entanglement would then always yield a violati@b] (al-  results of direct andp measurements electronically. It was
ternatively, one may modify the inequality and leave theshown in Refs[18,19 that conditions for genuine multipar-
Gaussian state unchanged to obtain a necessary and suffte entanglement can be derived based on the abosem-

cient condition[37]). The point is that the entanglement of pinations and additional assumptions such as the purity and
states already in this standard forfsuch as two-mode the total symmetry of the state in question. Later, we derive
squeezed statesan, in principle, alwaysfor any nonzero 3 set ofN—1 conditions for thes&l combinations sufficient
squeezingbe verified experimentally by checking E&). A for the presence of genuine multipartite entanglement. This
full determination of the correlation matrix, including ele- set is well suited for the experimental confirmation of the
ments such aéx;p,)—(x4){p,) which do not appear in the genuine multiparty entanglement of CV GHZ-type states. No
expressions of E(8), is not required. Measuring these ele- extra assumptions about the state are needed in order to close
ments may also confirm that the state is in standard fornthe loophole of partial separability. First, we discuss now

Up, ... ,Un_D)|P(v',ug,Us, ..Ul _q))
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what the structure of simple experimental criteria for multi-

partite CV entanglement might be. ﬁ=2i 7 ;’i,km®;)i,n
VI. DETECTING ENTANGLEMENT: TRIPARTITE CASE =1f(hy,hy,h3,01,02,03) (14
Let us consider three parties and modes. The goal is to = (|hngnl + |Gk hmGml ) /2. (15)

extend the simple two-party, two-mode entanglement check R R

to a simple test for genuine three-party, three-mode entanglédere,p; \® p; , indicates that the three-party density opera-
ment. The criteria are to be expressed in terms of the varitor is a mixture of states where partiegmode$ k and m
ances of quadrature linear combinations for the modes inmay be entangled or not, but partys not entangled with the

volved. Defining rest, and k,m,n) is any triple of (1,2,3). Hence, also the
fully separable state is included in the above statements. In
U=h;X;+hoXo+haXs, 0=01P1+9oP>+9sPs, fact, for the fully separable state, we have
(12

a fairly general ansatz is P:Z 7iPi1®Pi2¥Pi3
- R (16)
((Au)?),+((Av)?),=f(hy,h;y,h3,01,92,95), (13) =f(h1,h2,h3,01,92,93)

as a potential necessary condition for an at least partially = (|h191| +[h2g2| +[h3g3))/2, (17

separable state. The position and momentum varialasd  hich is always greater than or equal to any of the bound-
p, are the quadratures of the three electromagnetic modearies in Eq.(15). For the proof, let us assume that the rel-
Theh, andg, are arbitrary real parameters. We will prove the evant state can be written as in E44). For the combina-
following statemerts) for (at least partiallyseparable states: tions in Eq.(12), we find

(AW, +((A0)%),= 2 m((U)i+(0%)) = (W)~ (v);
= 20 PR+ X+ OE)+ G(PRY+ QR PR + I PR+ 2( N XX+ i)
+ Db XX i) + 2(9icrm{ PkPrmi + Gkn{ PkPr)i + G PP 1) ] = (U)2 —(0)3
=20 i [ (A%0%)i+ hT((Axm) )i+ R (AX0)2)i+ GK((APW )i+ IR (APm) )i+ G (APR) ),

+ 20N (XX = (Xidi X))+ 20k (XX = (Xidi{ X)) + 20N (KX = Xei{ X))

+ nggm(<6kﬁm>i _<f5k>i<[3m>i) + 29kgn(<f5k|5m>i _<|3k>i<|3m>i) + nggn(<|3mf)n>i _<|3m>i<|3n>i)]

F3 n @[S ) <3 n3-[ S mn) 1

where (- --); means the average in the stgig,®pjn. mains to be shown that for any[recall that the mixture in
Note that in the derivation, so far we have not used theé=d- (14) is a convex sum wittE;z =1],
particular form in Eq.(14) yet. Exploiting this form of the

state, we obtair XX, = (X (Xt s Ko =i (X s hE((AX)2)i+h2{(AXm) )i +h2((AXn)?)i+ g (Apw)?);

and similarly for the terms involving. Because moddsand 2/ A0 12 2/ A0 \2 ° 3
DA + A i+ A i+ 2h h (XX )i
mmay be entangled in the statesve cannot replacéx,X); O (4 Pm) 1 G (4Pn))s il Xt
by (XW)i(Xm)i, €tc. By applying the Cauchy-Schwarz in- —(XQi{(Xm) + 29k Gm({ PkPm)i — {Pi)i{Pm)i)
equality as in the two-party derivation of Ref35], = (IhGnl + [Megi+ Mg )2 (19
= nYn kYk mYym .

3 Pi(U)?=(Z;P;|(u);|)?, we see that the last line in EGL9)
is bounded below by zero. Hence in order to provepy rewriting the left-hand side of Eq19) in terms of vari-
((Au)®),+((A0)?),= (IhnGnl + [Nk +hmgml)/2, it re-  ances only, indeed we find
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h2((AXn)2)i + 9% (AP )i+ ([ A (Mt Nk 12): tion. The variances of these combinations may then yield
violations of conditions necessary for partial separability.
+{[A(GkPx+ ImPm) 12); Appropriate combinations are those where the total variances

R R R R R R for all partially separable states have nonzero lower bounds
=([hnXn ,9nPn )]+ [{[NiXkt DinXm . kP +9mPm])l  and where the commutators of the combinations vanish. As
_ for the derivation of the corresponding entanglement criteria,
= (|Py@n| + [N G+ hingm|)/2, @0 e employ the following steps.

R R (1) Select a distinct pair of modesn(n).

using the sum uncertainty relatiof(AA)?)+((AB)?) (2) Choose appropriate linear combinations of the quadra-
=|([A,B])| and[x ,f)j]:iﬁ,jlz. Hence, the statements in tures in order to rule out all possible separable splittings
Eqg. (15 with Eq. (14) are proven for all permutations of between this pair of modes in the convex sum of the total
(k,m,n)=(1,2,3). The inequalities, Eq13) with Eq. (15)  density operator.

and Eq.(14), represent necessary conditions for all kinds of (3) Consider different pairsnj,n) to negate all partial
(partia) separability in a tripartite three-mode state. One mayseparabilities; if necessary add further conditions involving
then prove the presence of genuine tripartite entanglemenjiher linear combinations.

t(hrougn )violationts)l 01; these irl’]le(ﬂlua"tri]es, thus rU||i|”9 hOUt adnfy Below it will become clear that stef®) can be performed
partially) separable form. Whether there are really three dif-_. . : N Lo
ferent conditions required for the verification, depends on theS'rPply byAusmAg th_e appropr@e bipartite combinations,
choice of the coefficientsy, and g, in the linear combina- ~Xn @nd Pm+pn, i-€., by taking allh,=g,=0 excepth,
tions. For a particular choice, some of the conditions may= 9m=1 andh,=—g,=—1 in the general combinations,
coincide. For example, considdr;=g;=1 and g,=03
=—h,=—h3=1/\2 in Eq.(12). In this case, the boundaries
in Eq. (15 become identical for K,m,n)=(1,2,3) and
(k,m,n)=(3,1,2),f(hy,h5,h3,01,95,93) = 1/2. The bound-
ary of Eqg. (15 is even larger whenk,m,n)=(2,3,1),
f(hy,hs,h3,01,05,93)=1, equivalent to that for a fully
separable state in E¢L6) with Eq. (17). Hence the violation
of a single condition,

U=hyX;+hoXo+ - - - +hyXy,

U=01P1+0GoPo+ - +ONPN - (23

VY G 2 - - - 2
{ADa— Gt X9/ N20}2),+ ({ALP1 (Pt Pa)/V211%), The boundaries of the total variance conditions are then iden-

=1/2, (21)  tical for any pair (,n) separable in the convex sum,

_ o ) o namely,f(h;,g)=1 in
is already sufficient for genuine tripartite entanglement.

These particular combinations are not only significant for the
reason that they yield nonzero boundaries for all kinds of A A
separable states. Moreover, their commutator vanishes, <(Au)2>p+<(Av)2>p>f(hl,hz, ...,NNL91,92, - - - ON)-

(24)
[X1— (Xo+X3)/\2,p1+ (P2t Pa)/V2]=0, (22

allowing for arbitrarily good violations of Eq(21) and, in  However, in general, one obtains better multiparty conditions
principle, the existence of a simultaneous eigenstate of thesghen |inear combinations for the quadratures of more than
two combinations. Such a state corresponds to the threég,iy two modes are used. Through such multimode combi-
mode state obtainable by splitting one half of an infinitely \a4ing the potential multimode correlations are taken into
squeezed two-mode squeez(e;EPR)A state at a 50:§O beam account. Before giving an example, let us first derive the
splitter. The EPR correlations; —x,—0 andp,+p2—0,  generalN-party bounds in the condition given in E(R4).

are then transformed into the three-mode correlations For any partially separable form, the total density operator
— (x5+x5)/2—0 and p;+ (p5+p3)/2—0. Let us turn can be written as

to an arbitrary number of partigsnode$ now.

VIl. DETECTING ENTANGLEMENT: . . .
MULTIPARTITE CASE p=2> MiPik, .- m®Pikg, s (25
1

Inferring from the discussion of the preceding section, the
recipe for verifying the genuine multipartite entanglement
between arbitrarily many parties and modes is the followingwith a distinct pair of “separable modes™(,n) and the
First, measure both quadraturgsand p of all modes in- other modes, #ks. For the combinations in Eq23), we
volved and combine them in an appropriate linear combinafind now
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<<Aa>2>,,+<<A8>2>,,:Ei 7i((U2)i+(02)) —(U)2—(v)?

N—-2 N—-2

=2i 7 h5n<§<2m>i+hﬁ<§<ﬁ>i+;l hﬁj<3<ﬁj>i+g§<ﬁﬁ>i+gﬁ(ﬁﬁ>i+JZI 9k (Pk )i
N-2 N-2
+ (hkjhkj/<;(kj;(kj/>i+gkjgkj/<ﬁkjl3kjr>i)+2]§=:1 (hkjhm<;(kj;(m>i+hkjhn<;(kj;(n>i

j#i'=1

+ gkjgm<|3kjﬁm>i + gkjgn<|3kjﬁn>i) + 2(hmhn<;(m;(n>i + gmgn<6mﬁn>i) - <a>§_<{)>;2:
N-2

=2 m[h?n«A%m)Z)i+hﬁ<<Ain>Z>i+gi<(Ahm>2>i+g§<<m6n>2>i+jEl (hE{(A%)?),

+ g§j<(AE)kj)2>i) + 25 [hi b (X, )i = O DidXie )1 + Gk G (P P, i = (i )i P, i)

r#r’

+ 2 [hkshks!«;(ksg(ks)i - <;(ks>i<;(ksl>i) + 0k Ik, (€ ﬁksﬁks)i — Isks>i< E’k5,>i)]

s#s’

+ 22 LB, Dt Xemdi = (X Di{Xm)i) + Gk, Il (Pic P = (Pic i {P)i) ]

+ 22 [ B (e X = (i di€Xn)i) + G In({ P P _<bks>i<f3n>i)]}

2 2
3 @ +3 n@i-| S m) 26

Ei ﬂi<a>i

For the last equality, we exploited E@®5), namely, modeg, throughm are separable from modé&gthroughn in the convex
sum of the total density operator. Similar to the three-party case, we can now apply the Cauchy-Schwarz inequality to the last
line of Eq.(26) and express the remaining terms by variances only. This leads fartany

< 2>i+< A(gm6m+2 gkrf’kr>r>i

2
A(hnin+2 hksiks) > +<
S .
|

hm;(m+ zr hkr;(kragmf)m"_ Z gkrf)kr

A( Bkt 25 i Xy
r

X s S e[|

| )l

using again the sum uncertainty relatiof(AA)%) i, p=Zi7ipik .m®  @Pik PPk, 0@ DPik,s
+((AB)®=|([A,B])|. Thus, by evaluating the commuta- would in general make the bound larger, eventually yielding
tors with [ ,p;]1=14};/2, we obtain for the total variance ~ the bound for the fully separable stat&;|h;g;|/2 (]
=1,... N).

As mentioned previously, the well-known bipartite com-
binations applied to modesm(n), X,—X, and pm+ Py,
mean allh,=g,=0 excepth,,=g,,=1 andh,=—-g,=-1
: (28)  in Eq. (28) and hencd(Au)?),+((Av)?),=>1.

As for a simple example, we may extend that from the
Any additional splitting of the parties in the states Preceding section toN modes and seh;=g;=1 and

+ , (27)

hn;(n"— z hkS;(kSrgnf)n_i_ Es gksﬁ)ks} >

+1hgn

~ N 1
<(Au)2>p+ <(AU)2>p2 E( NmOm+ 2 hkrgkr

+ES hy 9k,
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FIG. 1. Verification of genuine tripartite CV entanglement.
measurements: directly detecting thequadratures of all three FIG. 2. Verification of genuine tripartite CV entanglemenpt.
modes and electronically combining them in an appropriate Waymeasurements: directly detecting tpequadratures of all three
The three-mode tripartite entangled state of modes 1, 2, and 3 ifhodes and electronically combining them in an appropriate way.
this figure is produced with three squeezers and two beam splittefghe three-mode tripartite entangled state of modes 1, 2, and 3 in
(the star denotes a 1:2 BS this figure is produced with three squeezers and two beam splitters.
The parameterg; are the “gains” from the conditions in Eq37)
which can be chosen optimallgee the text latgr

02=03= - =0y= —hp=—hg=---=—-hy=1/yN-1.

Without loss of generality, we choose=1 and obtain for a

state of the form given in Eq25), emerges after symmetrically splitting one half of an infinitely
M, ) squeezed two-mode squeezed statdNby2 beam splitters.

+
N—1

The output state is a simultaneous eigenstaté ahdo. In
(29)  this case, the EPR correlations,— Xx,—0 andp;+p,—0,
are transformed into th&l-mode correlationsc; — (x5 + X5

N—1

1+Mg

~ - 1
<(Au)2>p+<(AU)2>p> 5( ‘ 1-

whereM;, is the number of modes potentially entangled with - - AT
mode m=1 in the convex sum anM, is the number of - +Xy)/YN—=1-0 and Pt (Pat+pst -
modes potentially entangled with modén the convex sum.  +pj)/VN—1—0. As a further example, we will now dis-
Apart from the fully inseparable casé,=N—1, the bound- cuss the CV GHZ-type states with quadrature correlations
ary in Eq.(29) is always greater than zero, allowing for an analogous to those of DV GHZ states.

ultimate nonzero bound for all kinds of partial separability.

Since[u,0]=0, genuineN-party entanglement can be veri-

fied when((Au)?),+((Av)?), is sufficiently close to zero. VIIl. EXAMPLE: CV GHZ-TYPE STATES
The ultimate(smalles} bound is given by the state with the
maximum number of model!, inseparable from modm We consider a family of genuinely-party entangled

=1 in the convex sumM,=N—2, and hencéV;=0. This  states. The members of this family are those states that
bound is then 1 —1). If none of the modes is inseparable emerge from a particular sequenceNof 1 phase-free beam
from modem=1, M, =0 andMs=N—2, the boundary be- gplitters(“ N splitter”) with N squeezed state inpujts1]. By
comes simply that of a fully separable state, namely 1. Thughoosing the squeezing direction of one distinct input mode
again the violation of aingle condition, orthogonal to that of the remaining input modesode 1
A A A A squeezed ip and the other modes squeezedkjras shown
({ADX = (Xo+ Xg+ - +x0)/IN—1]}), ianigs. 1 arnlDd 2 foN=23) and the deg?ee of squeezinghy
A A A 12 of mode 1 potentially different from that of the other modes
+({A[p1+ (P2t pst - +pn)/VN—1]}9), (which arepequally gqueezed Iby) [39], the output states
=1/(N-1), (30) have the following propertied18,19. These are pure
N-mode states, totally symmetric under interchange of
is sufficient for genuineN-partite entanglement. As an ex- modes, and retain the Gaussian character of the input states.
ample for the violation of the ultimate bound for genuine Hence, they are entirely described by their second-moment
N-party entanglement, consider thW-mode state that correlation matrix
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a 0c 0 c O For the whole family ofN-party N-mode states with the cor-
0Ob o0 do d relation matrix in Eq.(31), the quadrature combinations rel-
evant for detecting genuine multiparty entanglement are
c 0a0¢cO [11,18,19
1 d 0 b o0 d
ym==-| 0 . (3D S N2\ a2
N 2
0 d o doOb A -
<[A Pt Pat g™ > p;” >
j#Fmn
_[2+(N-2)g™MP
where - 4N €
1 N—1 (g™M-1)%(N-2)
_ T at2 -2 +2r

a=e M4 N € f2, + 5N e 'z, (35
1 N—1 The total variances are then optimizédinimized for

b=—e’2r1+ e+2r2
N N '

e+2r2_e—2r1

. Iopt = — (36)

c= N(e+2rl_e—2r2)' et2ra4 Te—Zfl

1 In the limit of infinite squeezingr,,r,—, the above cor-

d= N(ef i—et?z), (32 relations correspond to a simultaneous eigenstate of the rela-
tive positions and the total momentum such as the CV GHZ

ates in Eq(9).

Let us now examine how to experimentally verify the
genuine multipartite entanglement of the CV GHZ-type
states(in any case, it may be verified in an operational way
sby doing quantum teleportation between every pair of parties

with the help of the remaining parfit1]). Due to experimen-

tal imperfections, we may assume that the entanglement of

slightly degraded approximate versions of the states, gener-

: : : ated according to a scheme as in Figs. 1 and 2, is to be
in general, biased with respectxa@andp (a#b). Only for a s S .

particular relation between the squeezing values,r(,) ver|f|ed_. We start again with only thf?e paruesland m.o_de§.
(18,19, For a simple check, look at the following set of inequalities:

For squeezed vacuum inputs, the multimode output state¥
have zero mean and their Wigner function is of the form
given in Eq.(1). The particularly simple form of the corre-
lation matrix in Eq.(31) is, in addition to the general corre-
lation matrix properties, symmetric with respect to all mode
and contains no intermode or intramodey correlations

(hence, only four parametegs b, ¢, andd are needed to

determine the matrjx However, the states of this form are,

, I ([A(X—X2) 12 +([A(py+p2+0spa)19)=1,
e"“'1=(N—-1)sinh2r,

1
14 ————+1
\/ (N—1)2sintf2r,

(33) Il ([A(X2=X3) 13 +([A(g1P1+ P2+ P3) )=1,
the states are unbiaséall diagonal entries of the correlation N ([AX—%3) 1D+ {[A(P1+U2pa+ P3)]2)=1.
matrix being equal thus having minimum energy at a given (37

degree of entanglement or, in other words, maximum en-

tanglement for a given mean photon numf@9]. The other On the left-hand side(lhs) of condition | we haveh;
N-mode states of the family can be converted into the= —h,=g;=0,=1 andh;=0, and hence the boundary for
minimum-energy state via local squeezing operationghe total variance in Eq(13) with Eq. (15 and Eq.(14)
[18,19,39. Only for N=2, we obtainr=r;=r,. In this becomes 1 fork,m,n)=(3,1,2) and k,m,n)=(2,3,1), but
case, the matri¥ (™) reduces to that of a two-mode squeezedzero for k,m,n)=(1,2,3). Similarly, using the left-hand
state which is the maximally entangled state of two modes aside of condition Il whereh,=—hz=g,=g;=1 and h;

a given mean energy with the correlation matrix entées =0, the boundary is 1 fork,m,n)=(1,2,3) and k,m,n)
=b=cosh2 and c=sinh2=—d. For generalN, the first =(3,1,2), but zero fork,m,n)=(2,3,1). Finally, the lhs of
squeezer withr; and theN—1 remaining squeezers witty ~ condition Il with hy=—hz=g;=g;=1 andh,=0 corre-
have different squeezing. In the limit of large squeezingsponds to a boundary of 1 fork(m,n)=(1,2,3) and

(sinh 2,~e"?2/2), we obtain approximately18,19 (k,m,n)=(2,3,1), but zero forK,m,n)=(3,1,2). Thus, the
following statements fofat least partially separable states
et?1i~(N—1)e" 2, (349 hold,
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. . . nations zerp as the three-mode entanglement increases. In
p=2 7ipi1®piaz, =Iland lll, contrast, the bipartite conditions witly, =g,=g;=0 may
' be violated for bad three-mode entanglem@mall squeez-
. . . ing) and satisfied for larger squeezing, thus not always veri-
PZZ 7ipi1s®piz =1 and I, fying genuine tripartite entanglement, and, in particular,
! never verifying good genuine tripartite entanglement. More-
R R R over, they might be always violated, but the violations do not
p=2 7ipi23®pi1 =1 and Il (39 attain a significant amounte.g., three-mode states made
' from one squeezed staf&8,19). Similarly, using products

The conditions in Eq(37) are necessary for different kinds Of variances[38] instead of sums in E¢(37) with g;=0;
of partial separability. As a result, the violationay pairof =~ =gs=0, violations may always occur, but also only to a
inequalities in Eq.(37) is sufficient for genuine three-party certain exten{18,19. In Figs. 1 and 2, it is shown how to
three-mode entanglement. Violating only one condition inapply the tripartite entanglement criteria experimentally us-
Eq. (37) (for example, condition)lmeans that the total den- ing homodyne detectors.
sity operator cannot be written in two of the three forms in  Let us also discuss the conditions for the=4 case in
Eq. (38) (for example, neither in the f0fn§)=2i7li13i,13 more detail. We consider the following set of six inequalities:
® pi » Nor in the formp=3,7;p; 25® p; 1). Using the classi-
fication of Ref.[30], the classes 3two-mode biseparable
states expressible in two of the three forms in EBB)], 4 o o R
[three-mode biseparable states expressible in all of the threell  ([A(X,—X3)]2) +{[A(g1p1+ P2+ P3+9apa)1?) =1,
forms in EQq.(38)], and 5[fully separable states describable
by Eq. (16)] are then ruled out. The forms of the classes 1 ||| ([A(X;—X3) ]2+ ([A(P1+U2P2+ Pa+aPa) 1) =1,
(fully inseparable stat¢s@ind 2[one-mode biseparable states
expressible in one of the three forms in E88)] remain both
possible. In our example with the violation of condition I, the
state might be genuinely tripartite entangled or of the par-
tially separable formp= =, 7;p; 1,9 p; 3. Eventually, the vio-
lation of a second inequality in E437) (for instance, con- S, R R P
dition I1) negates also the only remaining partially separable VI ([A(X1—X4)]%) +({[A(P1+02P2+g3Pps+pa)])=1.
form (e.g.,p==,7ip; 120 pi 9), thus proving the full insepa- (39
rability of the state[40]. Note that even though pure and " A -
totally symmetric multiparty entangled states are aIwaysThe position and momentum var_lable1$ and P are the
genuinely multipartite entangldd8,19, asymmetric pure or quadratyres o_f four electromagnetic modes this tlme.g]he
mixed entangled three-mode statesy., from class 2 in Ref. &€ again arbitrary rea_l parameters. Now the following state-
[30], the product state of a bipartite entangled two-modeMents for(at least partially separable states hold,
squeezed state and a vacuum sgtated symmetric mixed
entangled three-mode statdike the example for the three- . - -
mode biseparable class, class 4, given in [R&®]) do not P Z 7 piazgPpia =1V V,and Vi,
automatically exhibit genuine tripartite entanglement. Due to
the violation oftwo conditions in Eq.(37), the two loop- - - -
holes of partial separability, mixedness and/or asymmetry, p=2 mpia®piz =, Il and 1V,
are ruled out. '

The criteria here are only sufficient for full inseparability
g:md hence genujnely t_ripartite entangled states may also sat- ,3:2 77i;7i,134®;7i,2 =1, 1,and V,
isfy all the conditions in Eq(37) (an example will be men- i
tioned late). On the other hand, note that we did not use the
assumption of Gaussian states. The derivation of the condi- - - A
tions relies only on the Cauchy-Schwarz inequality and p=2i Mipi2z®pia =1, I, and Vi (40)
Heisenberg’'Ysum uncertainty relation.

Alternatively, one could simply check the known bipartite znq
separability condition$35] for pairs of modes, i.eg;=g,
=g3=0 in Eqg. (37) (or using products of variancd88] - - -
instead of sums Again, the statements of E438) hold. P:zi 7ipi2®piza =111,V and Vi,
Hence, two violations again verify genuine tripartite en-
tanglement. However, the significance of the more general R R R
conditions in Eq.(37) compared to those with;=g,=9; sz 7ipi 132 pi2a =1, 11,1V, and VI,
=0 is that for the CV GHZ-type states, as discussed later, :
the former caralwaysbe violated for any degree of multi-
party entanglement and the violations can steadily grow from p=> 7ipi14®piza =1, 11, IV, and V. (41)
small towards “perfect”(that is all variances of the combi- i ’ ‘

([A(X1—X2) 13 +{[A(P1+ P2+ 9sPs+9sps) 13 =1,

IV ([A(X3—X4) 12 +{[A(g1P1+GoP2+ Pa+ Pa)12)=1,

Vo ([A(X2—X4) 12 +([A(Q1p1+ P2+ 0sPs+ pa) 13 =1,
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Note that again the fully separable stapes =;7;p; 1® pi 30.---"""- -
®p;3®pi4, IS included and as well states such as

=37 pi km® Pi.1® pi.n - The above statements can be easily

confirmed using Eq(28) for states of the general form

given in Eq. (25. The different forms here arg@=

Ei77iPi,i<|m(X’/0iA,n including PTEiUiPi,Am@Pi,T@Pi,An, and p

=2 7ipi km® piIn INcluding p=Z; 7ip; km® pi | ® pi n, With

the two modesm and n always being separable. For the

combinations= Xy~ X, and v =g,pPx+ 9P+ Pm+ Pn, the

boundary of the total variance is always 1. The statements in

Egs. (40) and(41) become obvious then, by considering all  F|G. 3. Plot of the left-hand sidegotal variance of the condi-

possible pairs of modesr(, n) of the four modeskK,|,m,n). tions in Eq.(43) for differentN-mode states with quadrature corre-

Note that always when the two modes,(n) are potentially  |ations given by Eq(35) and different numbers of partiéé=3 and

entangled, the boundary for the total variance drops to zeraN=30. The states are those produced with one squeezeddbate
What kind of violations of the six inequalities in E9)  ted lines withr,=0 and r=r,), those made fromN equally

are now sufficient to verify the full inseparability of a four- squeezed stateglashed lines withr=r;=r,), and the unbiased

mode, four-party state? The violations must rule out any ofminimum-energy states with squeezingandr =r, related as in

the partially separable forms in Eq40) and(41). Let us, for  Eq. (33).

example, consider violations of the inequalities IV and V.

These violations mean that all partially separable forms ir‘([A()“(Nfl_)“(N)P)

Egs. (40) and (41) are excluded except for the form . - . . A

=3, m;}i,234®;3i11 in Eq. (40). In order to negate this form as +([A(g1P1+G2Pot -+ +On-2PN-2F Pu-1 T P ]

well a further violation is needed. According to Eg0), one <1. (43)

of the inequalities 1, IIl, or VI should be violated in addition.

Here it is important to realize that the conditions IV and V do These conditions are sufficient to verify the full inseparabil-

not involve thex quadrature of mode 1, but that of all the ity (genuineN-party entanglemehtof an N-party N-mode

other modes. The additional test via any one of the condistate. For an arbitrari}, the proof relies on the fact that in

tions I, Ill, or VI of which all contain both quadratures of any partially separable form, we may always select a distinct

mode 1, eventually provides the missing information aboupair of modes fn,n) that are separable in the statesf the

mode 1. Hence we learn that three conditions are sufficierdonvex sum of the density operator. Only exploiting that

here to verify the full inseparability of a four-mode, four- modesm andn are separable, the combinations

party state. We may choose

o O O O

N & Oy 0
’
’

0 0.20.40.60.8 1
squeezing r

N-2
([A(X1=X2) 1)+ ([A(P1+ P2+ gaPstUapa) 12 <1, U= Xm ™0 v:jzl 9P Pm* P (44
A5 T2 A(GD+ Dot B S V12y<q always yield a boundary of 1 for the total variance using Eq.
([A(X2=X3)]%) +([A(91P1+ PotPs+0aPa)]9) <1, (28) for states of the general form given in E@®5). By
taking the pairs of modes (1,2), (2,3),.., (N—1,N) for
([A(X3—X4) 12 +{([A(g1p1+GaP2+ P3t+ Pa)12)<1, (m, n), all partially separable forms of the total density op-

(42 erator are covereths demonstrated explicitly f&d=4) and
hence theN—1 conditions in Eq.(43) are sufficient for

which involve both quadratures andp of all four modes. genuineN-party, N-mode inseparability.
Note that apart from the coefficiengs, these four combina- The left-hand sides of the inequalities in E@3) are
tions correspond to those observables measured in a foushown in Fig. 3 for various CV GHZ-typ&l-mode states,
party CV GHZ state analyzer. Correspondingly, foparties  differing in the relation between the squeezingandr,
and modes, we may choose the followiNg- 1 conditions in  [Egs.(31), (32), and(35)]. Due to the total symmetry of all
terms of effectiveN combinations(those of anN-party these states, the left-hand sides of the conditions in(4g).
N-mode CV GHZ state analyzer become equal for all conditiortassumingg;=g™). Hence,
values below the boundary 1, here mean all inequalities in
Eq. (43) are satisfied: thus, indicating genuiieparty en-
tanglement. In all these cases, in Fig. 3, the optimal coeffi-
cientsg;=g{};) from Eq.(36) are used to minimize the total

([A(Xy—X2) 12 +{[A(P1+ P2+ gspst - - - +OnPN)1P) <1,

([A(X2—X3)1?) variances of Eq(35). If N=30, only for the unbiased states,
A A A N A, the conditions are always méfor any nonzero squeezing,
+([A(Q1P1+ P2t PataPat - TONPNID <L, 1>0) andthe total variances tend to zero for large squeez-

ing. Moreover, for the same squeezinghe unbiased states
with N=30 drop below the boundary 1 to a greater extent
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than their unbiased tripartite counterparts. In contrast, for thén fact, in the two-party two-mode case, for instance, any
biased stategthose with only one squeezer,=0 andr state with a correlation matrix corresponding to an entangled
=r,, and those withN equally squeezed states=r, Gaussian state is itself entangled, {@8]. An experimental

= rz), the total variances approach or even exceed th@_onfi_rmation of the Gaussian _charac_ter of the state _in ques-
boundary 1 as the number of parties grows. The example dfon is therefore not needed either. Finally, we examined the
the states withN equal squeezers also demonstrates that ther@pplicability of the conditions to a particular GHZ-type class
are Gaussian states that are indeed genuiheparty en- of genumel_y multiparty entangled states. Thesg states are of
tangled, but do not satisfy any of the conditions in E4p).  the Gaussian form, they are totally symmetric under ex-
It can be shown, however, taking into account the symmetrghange of modes, and they have zero cross correlations be-
and purity of the whole family oN-mode stategincluding ~ tween thex and thep quadratures. If they are, in addition,
those withN equal squeezershat all these states are genu- Unbiased between theand thep quadratures, they always
inely multiparty entangled for any nonzero squeezing(for any nonzero entanglemensatisfy the conditions in
[18,19. terms of appropriately chosen linear combinations. In the

Finally, we emphasize that one may use other conditiongmit of perfect entanglement, the variances of the combina-
too for Verifying the genuine mu|tipartite entang|ement oft|0ns tend to zero for the unbiased States, and the conditions

the CV GHZ-type states. Even a single condition might beare perfectly met.

: - - s In an experiment, one normally has approximatgriori
again sufficient. For example, consider the combinations ' . .
gal A A exampie, co knowledge about the state to be analyzed. According tcathis
=2X;—(Xp,+X3) andv=p;+p,+p;3 for three modes. We

4 priori knowledge, one can then choose appropriate linear
have[u,v]=0, and indeed the GHZ-type three-mode statecombinations to be measured. It would be desirable to know
becomes a simultaneous eigenstate ahdo in the limit of ~ whether there is always, for any given multiparty, multimode
infinite squeezingr,,r,—. The boundaries of the total state, a single optimal condition to verify its genuine multi-
variance for these combinations take on the value 1 whepartite entanglement and how to constructively derive this
P=3i7ipi 129pi3 OF p=37pi159pi 2, and the value 2 condition. Inferring from the results here, such a condition
. - may always exist and the corresponding linear combinations

(corresponding to the fully separable sjateshen p . . o

K ~ < Ao _ i must contain both quadratures of all modes with optimized
=27ipi25® pi 1. Hence((Au)%),+((Av)%),<1 is suffi-  .,efficientsh, andg, . A possible approach to this question is
cient for genuine tripartite entangleme.nt. The number of, arms of so-called entanglement witnes§26,41. One
measurements required, however, remain the same as for the,y then interpret the inequalities for the total variances as
criteria above expressed By—1 conditions. In any case, guantum expectation values of Hermitian operators which
both quadratures of all modes must be detected and coMaye on negative values when they witness some kind of
bined in an appropriate way. partial inseparability.
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