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Detecting genuine multipartite continuous-variable entanglement
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1Quantum Information Theory Group, Zentrum fu¨r Moderne Optik, Universita¨t Erlangen-Nu¨rnberg, 91058 Erlangen, Germany

2Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
~Received 27 December 2002; published 29 May 2003!

We derive necessary conditions in terms of the variances of position and momentum linear combinations for
all kinds of separability of a multiparty multimode continuous-variable state. Their violations can be sufficient
for genuine multipartite entanglement, provided the combinations contain both conjugate variables of all
modes. Hence, a complete state determination, for example, by detecting the entire correlation matrix of a
Gaussian state, is not needed.

DOI: 10.1103/PhysRevA.67.052315 PACS number~s!: 03.67.2a, 42.50.Dv
nc
s

as

as

m

te
ite
nt
s

t
ti-
s

ce

f-
ru
b
c

sti
im
er
ul
co
ht

e-
of
a
o
id
co
od
er
re

ic,
o

ee-
as

or-
he
a-
re-
pera-
ns,

gle-
-
be
ble
tics
DV
ch
he
-
loy

ger
CV
tors

of
to-
eri-
tes
arty
ity
li-
io-
he
en-

ko
-
n-

ust

p-
he
-

I. INTRODUCTION

Quantum entanglement shared by two parties enha
their capabilities to communicate. In principle, it allow
them to convey quantum information reliably through a cl
sical channel~quantum teleportation@1#!, to double the
amount of classical information transmittable through a cl
sical channel~quantum dense coding@2#!, or to prepare at a
distance states from nonorthogonal bases for secure com
nication ~quantum key distribution @3–5#!. These
entanglement-assisted communication schemes are ex
ible to an arbitrary number of parties sharing multipart
entanglement. For instance, a sender may transfer qua
information through classical channels to several receiver
reliably as allowed by optimal cloning~telecloning@6#!, or
the parties may share quantum~or classical! information re-
trievable only when all parties cooperate~quantum secre
sharing@7#!. A more recent proposal that exploits the mul
party quantum correlations of multipartite entangled state
the so-called Byzantine agreement protocol@8#. In general,
the presence of entanglement is verified through the suc
of a quantum protocol that would fail otherwise~e.g., quan-
tum teleportation!. Such an operational criterion is only su
ficient for entanglement, and failure does not necessarily
out its presence. In an experimental realization, however,
fore running through an entire entanglement-based proto
it is desirable first to confirm that the generation of sophi
cated multiparty entangled states has succeeded. The a
this paper is to provide a simple but unambiguous exp
mental test to check for a particular kind of genuinely m
tipartite entangled states, namely, those described by
tinuous variables~CV!, and produced with squeezed lig
and linear optics.

Work in the direction of generating tripartite CV entangl
ment has been carried out already by sending one half
two-mode two-party entangled state through an extra be
splitter with a coherent state or a vacuum state at its sec
input port @9,10#. The resulting three-mode state was a s
product of the Bell measurement for the teleportation of
herent states using a preshared symmetric two-m
squeezed state@9#. Its tripartite entanglement was not furth
investigated in this experiment. In another experiment,
ported recently@10#, the two-mode state was asymmetr
corresponding to two independently squeezed states c
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bined at an asymmetric 1:2 beam splitter. The output thr
mode state after an additional symmetric beam splitter w
then similar to the states proposed in Ref.@11#.

Quantum communication, or more general quantum inf
mation with CV has attracted a lot of interest due to t
relative simplicity and high efficiency in the generation, m
nipulation, and detection of optical CV states. Although
cent results suggest that these assets of Gaussian CV o
tions ~phase shifting, beam splitting, homodyne detectio
phase-space displacements, and squeezing! are not extend-
ible to more advanced quantum protocols such as entan
ment distillation @12–14#, the simple and efficient CV ap
proach still seems promising for many tasks and might
suitable for others too when combined with discrete-varia
~DV! strategies. On the other hand, potential linear-op
implementations of quantum protocols solely based on
utilizing single photons are restricted by No-Go results su
as the impossibility of a complete distinction between t
four Bell states@15#. In order to perform such a Bell mea
surement near perfectly with linear optics, one has to emp
complicated entangled states of many auxiliary photons@16#.
In contrast, a Bell and also a Greenberger-Horne-Zeilin
~GHZ! state analyzer can be easily constructed in the
setting using only beam splitters and homodyne detec
@17–19#.

How may one now verify experimentally the presence
entanglement without implementing a full quantum pro
col? We are here, particularly, concerned about the exp
mental verification of genuinely multipartite entangled sta
where none of the parties is separable from any other p
~in terms of the separability properties of the total dens
matrix!. In general, theoretical tests might be as well app
cable to the experimental verification. For instance, the v
lation of inequalities imposed by local realism confirms t
presence of entanglement. Proving genuine multipartite
tanglement, however, requires stronger violations@20# than
those determined by the commonly used Mermin-Klysh
N-party inequalities@21,22#. Moreover, in any case, viola
tions of Bell-type inequalities using the Gaussian CV e
tangled states with always positive Wigner functions m
rely on observables other than the quadratures~i.e., position
and momentum!. Photon number parity may serve as an a
propriate dichotomic variable to reveal the nonlocality of t
CV entangled states@23#. This applies to the two-party two
©2003 The American Physical Society15-1
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mode EPR-like@23# and to theN-party N-mode GHZ-like
CV states@24#. Such an approach, however, is not very fe
sible due to its need for detectors resolving large pho
numbers.

The negative partial transpose~NPT! criterion@25# is nec-
essary and sufficient for the bipartite inseparability of
32)-dimensional, (233)-dimensional@26#, and (13N)-
mode Gaussian states@27,28#. A complete experimental de
termination of the state in question would also enable
NPT check. In general, any theoretical test is applica
when the experimentalist has full information about t
quantum state after measurements on an ensemble of id
cally prepared states~e.g., by quantum tomography@29#!.
Such adirect verification of entanglement via a comple
state measurement is in general very demanding to the
perimentalist, in particular, when the state to be determi
is a potentially multiparty entangled multimode state.

II. GAUSSIAN STATES

The multiparty entanglement criteria that we will deriv
here do not rely on the assumption of Gaussian states. H
ever, the states commonly produced in the laboratory
indeed Gaussian and the theoretical classification of diffe
types of multipartite entanglement becomes simpler
Gaussian states@30#.

Since the entanglement properties of a multimode, mu
party state are invariant under local phase-space displ
ments, the multimode states may have zero mean and
Wigner function is of the form

W~j!5
1

~2p!NAdetV(N)
expH 2

1

2
j@V(N)#21jTJ , ~1!

with the 2N-dimensional vectorj having the quadrature
pairs of allN modes as its components,

j5~x1 ,p1 ,x2 ,p2 , . . . ,xN ,pN!,

ĵ5~ x̂1 ,p̂1 ,x̂2 ,p̂2 , . . . ,x̂N ,p̂N!, ~2!

and with the 2N32N correlation matrixV(N) having as its
elements the second moments symmetrized according to
Weyl correspondence@31#,

Tr@ r̂~Dĵ iDĵ j1Dĵ jDĵ i !/2#5^~ ĵ i ĵ j1 ĵ j ĵ i !/2&

5E W~j!j ij jd
2Nj

5Vi j
(N) , ~3!

whereDĵ i5 ĵ i2^ĵ i&5 ĵ i for zero mean values. Note that th
correlation matrix of any physical state must be real, sy
metric, positive, and must obey the commutation relat
@27,28#,

@ ĵk ,ĵ l #5
i

2
Lkl , k,l 51,2,3, . . . ,2N, ~4!
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with the 2N32N matrix L having the 232 matrix J as
diagonal entry for each quadrature pair, for example, forN
52,

L5S J 0

0 JD , J5S 0 1

21 0D . ~5!

A direct consequence of this commutation relation and
non-negativity of the density operatorr̂ is the N-mode un-
certainty relation@27,28#,

V(N)2
i

4
L>0. ~6!

Note that this condition is equivalent toV(N)1 iL/4>0 by
complex conjugation. As for the direct verification of e
tanglement via a complete state measurement, for the Ga
ian CV states, the complete measurement of anN-party,
N-mode quantum state is accomplished by determining
2N32N second-moment correlation matrix. This corr
sponds toN(112N) independent entries taking into accou
the symmetry of the correlation matrix. Kimet al. @32# re-
cently demonstrated how to determine all these entries in
two-party, two-mode case using beam splitters and hom
dyne detectors. Joint homodyne detections of the two mo
yield the intermode correlations such as^x̂1x̂2&2^x̂1&^x̂2&,
^ x̂1p̂2&2^x̂1&^ p̂2&, etc. Determining the local intramode co
relations such aŝx̂1p̂11 p̂1x̂1&/22^x̂1&^ p̂1& is more subtle
and requires additional beam splitters and homodyne de
tions ~or, alternatively, heterodyne detections!. Once the 4
34 two-mode correlation matrix is known, the NPT crit
rion can be applied as a necessary and sufficient cond
for bipartite Gaussian two-mode inseparability~where NPT
corresponds to a sign change of all the momentum varia
with positions unchanged@27#!. In fact, the entanglement ca
also be quantified for a given correlation matrix@32,33#. For
three-party three-mode Gaussian states, one may purs
similar strategy. After measuring the 21 independent ent
of the correlation matrix~for example, by extending the
scheme of Kimet al. @32# to the three-mode case!, the nec-
essary and sufficient criteria by Giedkeet al. @30# can be
applied. Let us examine the separability properties of~in
particular, three-party, three-mode! Gaussian states in mor
detail.

III. SEPARABILITY PROPERTIES OF GAUSSIAN STATES

The criteria by Giedkeet al. @30# determine to which of
five possible classes of fully and partially separable, a
fully inseparable states a three-party, three-mode Gaus
state belongs. Hence, genuine tripartite entanglemen
present can be unambiguously identified. The classificatio
mainly based on the NPT criterion for CV states. Transpo
tion is a positive map that corresponds in phase space
sign change of all momentum variables,jT→GjT5(x1 ,
2p1 ,x2 ,2p2 , . . . ,xN ,2pN)T @27#. In terms of the correla-
tion matrix, we have thenV(N)→GV(N)G. Since transposi-
tion is not a completely positive map, its partial applicati
5-2



th
ss

h

-

d

-

nt
ge
id
s

ie

or
o
b
a

r
e
ce
a
p
ilit
n
ar
ab

en
te

e

ab

ssian
-

tes,

e
epa-
the

rtite

-
en
not
sses

n
5

s to
ion

for
mes

PT

n

ing
ffi-
the

th

to
nu-
the
or

led

-
on-

,
. In
ar-

ia
yet

enu-
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to a subsystem only may yield an unphysical state when
subsystem was entangled to other subsystems. Expre
partial transposition of a bipartite Gaussian system byGa
[G % 1 ~whereA% B means the block-diagonal matrix wit
the matricesA andB as diagonal ‘‘entries,’’ andA andB are,
respectively, 2N32N and 2M32M square matrices appli
cable toN modes ata’s side andM modes atb’s side!, the
condition that the partially transposed Gaussian state
scribed by GaV(N1M )Ga is unphysical @see Eq. ~6!#,

GaV(N1M )Ga>”
i

4
L, is sufficient for the inseparability be

tweena and b @27,28#. For the Gaussian states withN51
and an arbitraryM, this condition is necessary and sufficie
@28#. The simplest example where the condition is no lon
necessary for inseparability involves two modes at each s
N5M52. In this case, states with positive partial transpo
~bound entangled Gaussian states! exist @28#. For the general
bipartiteN3M case, there is also a necessary and suffic
condition: the correlation matrixV(N1M ) corresponds to a
separable state if and only if~iff ! a pair of correlation matri-
ces Va

(N) and Vb
(M ) exists such thatV(N1M )>Va

(N)
% Vb

(M )

@28#. Since it is, in general, hard to find such a pair of c
relation matricesVa

(N) and Vb
(M ) for a separable state or t

prove the nonexistence of such a pair for an insepara
state, this criterion is not very practical. A more practic
solution was provided in Ref.@34#. The operational criteria
there, computable and testable via a finite number of ite
tions, are entirely independent of the NPT criterion. Th
rely on a nonlinear map between the correlation matri
rather than a linear one such as the partial transposition,
in contrast to the NPT criterion, they witness also the inse
rability of bound entangled states. Thus, the separab
problem for bipartite Gaussian states with arbitrarily ma
modes at each side is completely solved. For three-p
three-mode Gaussian states, the only partially separ
forms are those with a bipartite splitting of 132 modes.
Hence, already the NPT criterion is necessary and suffici

The classification of tripartite three-mode Gaussian sta
@30#,

class 1: V̄1
(3)>”

i

4
L,V̄2

(3)>”
i

4
L,V̄3

(3)>”
i

4
L,

class 2: V̄k
(3)>

i

4
L,V̄m

(3)>”
i

4
L,V̄n

(3)>”
i

4
L,

class 3: V̄k
(3)>

i

4
L,V̄m

(3)>
i

4
L,V̄n

(3)>”
i

4
L,

class 4 or 5: V̄1
(3)>

i

4
L,V̄2

(3)>
i

4
L,V̄3

(3)>
i

4
L, ~7!

is solely based on the NPT criterion, whereV̄j
(3)[G jV

(3)G j

denotes the partial transposition with respect to one modj.
In classes 2 and 3, any permutation of modes (k,m,n) must
be considered. Class 1 corresponds to the fully insepar
05231
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states. Class 5 contains the fully separable states. A Gau
state described byV(3) is fully separable iff one-mode corre
lation matricesV1

(1) , V2
(1) , and V3

(1) exist such thatV(3)

>V1
(1)

% V2
(1)

% V3
(1) . In general, fully separable quantum

states can be written as a mixture of tripartite product sta

( ih i r̂ i ,1^ r̂ i ,2^ r̂ i ,3 . In class 2, we have the one-mod
biseparable states, where only one particular mode is s
rable from the remaining pair of modes. This means in
Gaussian case that only for one particular modek, V(3)

>Vk
(1)

% Vmn
(2) with some two-mode correlation matrixVmn

(2)

and one-mode correlation matrixVk
(1) . In general, such a

state can be written as( ih i r̂ i ,k^ r̂ i ,mn for one modek. Class
3 contains those states where two, but not three, bipa
splittings are possible, i.e., two different modesk andm are
separable from the remaining pair of modes~two-mode
biseparable states!. The states of class 4~three-mode bisepa
rable states! can be written as a mixture of products betwe
any mode 1, 2, or 3 and the remaining pair of modes, but
as a mixture of three-mode product states. Obviously, cla
4 and 5 are not distinguishable via the NPT criterion. A
additional criterion for this distinction of class 4 and
Gaussian states is given in Ref.@30#, deciding whether one-
mode correlation matricesV1

(1) , V2
(1) , and V3

(1) exist such
that V(3)>V1

(1)
% V2

(1)
% V3

(1) . For the identification of genu-
inely tripartite entangled Gaussian states, only class 1 ha
be distinguished from the rest. Hence, the NPT criter
alone suffices.

What about more than three parties and modes? Even
only four parties and modes, the separability issue beco

more subtle. The one-mode bipartite splittings,( ih i r̂ i ,klm

^ r̂ i ,n , can be tested and possibly ruled out via the N
criterion with respect to any moden. In the Gaussian lan-

guage, ifV̄n
(4)>”

i

4
L for any n, the state cannot be written i

the above form. Since we consider here the bipartite splitt
of 133 modes, the NPT condition is necessary and su
cient for the Gaussian states. However, also a state of
form ( ih i r̂ i ,kl ^ r̂ i ,mn leads to negative partial transpose wi
respect to any of the four modes when the two pairs (k,l )
and (m,n) are each entangled. Thus, NPT with respect
any individual mode is necessary but not sufficient for ge
ine four-party entanglement. One has to consider also
partial transposition with respect to any pair of modes. F
this 232 mode case, however, we know that entang
Gaussian states with positive partial transpose exist@28#, but
the NPT criterion is still sufficient for the inseparability be
tween any two pairs. As for a necessary and sufficient c
dition, one can use those from Ref.@34#. In any case, in order
to confirm genuine four-party or evenN-party entanglement
one has to rule out any possible partially separable form
principle, this can be done by considering all possible bip
tite splittings ~or groupings! and applying either the NPT
criterion or the stronger operational criteria from Ref.@34#.
Although a full theoretical characterization including criter
for entanglement classification has not been considered
for more than three parties and modes, the presence of g
5-3
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ine multipartite entanglement can be confirmed, once
complete 2N32N correlation matrix is given.

Rather than detecting all the entries of the correlation m
trix, we are aiming here at a simple check based on on
few measurements, preferably efficient homodyne de
tions. Even for larger numbers of parties, this check sho
remain simple. Though it may not yield full informatio
~e.g., the complete correlation matrix! about the quantum
state of interest, it should still unambiguously verify th
presence of genuine multipartite entanglement. This ch
may prove the presence of entanglementindirectly through
measurements after transforming the relevant state first
an appropriate form via linear optics.

IV. DETECTING ENTANGLEMENT: BIPARTITE CASE

In the two-party, two-mode case, the necessary separ
ity condition for any CV state@35#

^@D~ x̂12 x̂2!#2&1^@D~ p̂11 p̂2!#2&>2u^@ x̂,p̂#&u, ~8!

can be tested, for example, with a single beam splitter.

position and momentum variablesx̂l and p̂l ~units free with

\5 1
2 , i.e., @ x̂l ,p̂k#5 id lk/2) correspond to the quadratures

two electromagnetic modes, i.e., the real and imaginary p

of the annihilation operators of the two modes:âl5 x̂l

1 i p̂ l . The beam splitter provides the suitable quadrat
combinations for the positions and momenta, simultaneou
detectable at the two output ports. Without beam splitter,
by measuring first both positions and subtracting them e
tronically, and in a second step, detecting both momenta
combining these electronically@36#, a more direct test of the
two-party condition is possible. However, instead of a sim
taneous detection of the relevant combinations, it requ
switching the two local oscillator phases from position
momentum measurements. For an ensemble of identic
prepared states, this sequence of detections would still en
the application of the two-party condition. Note that the v
lation of Eq.~8! is only sufficient for inseparability, i.e., ther
are~even Gaussian! CV entangled states that satisfy Eq.~8!.
Any Gaussian CV state, however, can be transformed
local operations into a standard form, and the presenc
entanglement would then always yield a violation@35# ~al-
ternatively, one may modify the inequality and leave t
Gaussian state unchanged to obtain a necessary and
cient condition@37#!. The point is that the entanglement
states already in this standard form~such as two-mode
squeezed states! can, in principle, always~for any nonzero
squeezing! be verified experimentally by checking Eq.~8!. A
full determination of the correlation matrix, including ele
ments such aŝx̂1p̂2&2^x̂1&^ p̂2& which do not appear in the
expressions of Eq.~8!, is not required. Measuring these el
ments may also confirm that the state is in standard fo
05231
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~when they are zero! and hence render the condition, Eq.~8!,
necessary and sufficient for separability. In any case
would also enable quantification of the entanglement@32,33#.

The combinations in condition, Eq.~8!, are exactly those
detected in a CV Bell measurement of modes 1 and 2@17#.
Thus, the verification of nonmaximum two-mode CV e
tanglement may rely on measurements of observables
are detected for the projection onto the maximally entang
CV basis of two modes. Now, we investigate theN-party,
N-mode case in this respect.

V. THE CV GHZ BASIS

Let us introduce the maximally entangled states

uC~v,u1 ,u2 , . . . ,uN21!&5
1

Ap
E

2`

`

dxe2ivxux& ^ ux2u1&

^ ux2u12u2& ^ •••^ ux2u1

2u22•••2uN21&. ~9!

Since *2`
` dxux&^xu51 and ^xux8&5d(x2x8), they form a

complete,

E
2`

`

dv du1du2•••duN21

3uC~v,u1 ,u2 , . . . ,uN21!&

3^C~v,u1 ,u2 , . . . ,uN21!u51^ N, ~10!

and orthogonal,

^C~v,u1 ,u2 , . . . ,uN21!uC~v8,u18 ,u28 , . . . ,uN218 !&

5d~v2v8!d~u12u18!d~u22u28!•••d~uN212uN218 !,

~11!

set of basis states forN modes. In a ‘‘CV GHZ state ana
lyzer,’’ determining the quantitiesv[p11p21•••1pN ,
u1[x12x2 , u2[x22x3, . . . , anduN21[xN212xN means
projecting onto the basis$uC(v,u1 ,u2 , . . . ,uN21)&%. This
can be accomplished with a sequence of beam splitters
homodyne detections@18,19#. Inferring from the two-party
case, we may conjecture that theN quadrature combination
given by v,u1 ,u2 , . . . ,uN21 provide a sufficient set of ob
servables for the verification of~possibly genuine! N-party
entanglement. Just as for two parties, the variances of th
quantities could then also be determined by combining
results of directx andp measurements electronically. It wa
shown in Refs.@18,19# that conditions for genuine multipar
tite entanglement can be derived based on the aboveN com-
binations and additional assumptions such as the purity
the total symmetry of the state in question. Later, we der
a set ofN21 conditions for theseN combinations sufficient
for the presence of genuine multipartite entanglement. T
set is well suited for the experimental confirmation of t
genuine multiparty entanglement of CV GHZ-type states.
extra assumptions about the state are needed in order to
the loophole of partial separability. First, we discuss n
5-4
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what the structure of simple experimental criteria for mu
partite CV entanglement might be.

VI. DETECTING ENTANGLEMENT: TRIPARTITE CASE

Let us consider three parties and modes. The goal i
extend the simple two-party, two-mode entanglement ch
to a simple test for genuine three-party, three-mode entan
ment. The criteria are to be expressed in terms of the v
ances of quadrature linear combinations for the modes
volved. Defining

û[h1x̂11h2x̂21h3x̂3 , v̂[g1p̂11g2p̂21g3p̂3 ,
~12!

a fairly general ansatz is

^~Dû!2&r1^~D v̂ !2&r> f ~h1 ,h2 ,h3 ,g1 ,g2 ,g3!, ~13!

as a potential necessary condition for an at least parti
separable state. The position and momentum variablesx̂l and
p̂l are the quadratures of the three electromagnetic mo
Thehl andgl are arbitrary real parameters. We will prove t
following statement~s! for ~at least partially! separable states
th

-

ve

05231
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r̂5(
i

h i r̂ i ,km^ r̂ i ,n

~14!⇒ f ~h1 ,h2 ,h3 ,g1 ,g2 ,g3!

5~ uhngnu1uhkgk1hmgmu!/2. ~15!

Here,r̂ i ,km^ r̂ i ,n indicates that the three-party density ope
tor is a mixture of statesi where parties~modes! k and m
may be entangled or not, but partyn is not entangled with the
rest, and (k,m,n) is any triple of (1,2,3). Hence, also th
fully separable state is included in the above statements
fact, for the fully separable state, we have

r̂5(
i

h i r̂ i ,1^ r̂ i ,2^ r̂ i ,3

~16!⇒ f ~h1 ,h2 ,h3 ,g1 ,g2 ,g3!

5~ uh1g1u1uh2g2u1uh3g3u!/2, ~17!

which is always greater than or equal to any of the bou
aries in Eq.~15!. For the proof, let us assume that the re
evant state can be written as in Eq.~14!. For the combina-
tions in Eq.~12!, we find
^~Dû!2&r1^~D v̂ !2&r5(
i

h i~^û
2& i1^v̂2& i !2^û&r

22^v̂&r
2

5(
i

h i@hk
2^x̂k

2& i1hm
2 ^x̂m

2 & i1hn
2^ x̂n

2& i1gk
2^ p̂k

2& i1gm
2 ^ p̂m

2 & i1gn
2^ p̂n

2& i12~hkhm^ x̂kx̂m& i1hkhn^x̂kx̂n& i

1hmhn^x̂mx̂n& i !12~gkgm^ p̂kp̂m& i1gkgn^ p̂kp̂n& i1gmgn^ p̂mp̂n& i !#2^û&r
22^v̂&r

2

5(
i

h i @hk
2^~D x̂k!

2& i1hm
2 ^~D x̂m!2& i1hn

2^~D x̂n!2& i1gk
2^~D p̂k!

2& i1gm
2 ^~D p̂m!2& i1gn

2^~D p̂n!2& i

12hkhm~^x̂kx̂m& i2^x̂k& i^x̂m& i !12hkhn~^x̂kx̂n& i2^x̂k& i^x̂n& i !12hmhn~^x̂mx̂n& i2^x̂m& i^x̂n& i !

12gkgm~^ p̂kp̂m& i2^ p̂k& i^ p̂m& i !12gkgn~^ p̂kp̂m& i2^ p̂k& i^ p̂m& i !12gmgn~^ p̂mp̂n& i2^ p̂m& i^ p̂n& i !#

1(
i

h i^û& i
22S (

i
h i^û& i D 2

1(
i

h i^v̂& i
22S (

i
h i^v̂& i D 2

, ~18!
where ^•••& i means the average in the stater̂ i ,km^ r̂ i ,n .
Note that in the derivation, so far we have not used
particular form in Eq.~14! yet. Exploiting this form of the

state, we obtain̂ x̂kx̂n& i5^x̂k& i^x̂n& i , ^ x̂mx̂n& i5^x̂m& i^x̂n& i ,
and similarly for the terms involvingp. Because modesk and

m may be entangled in the statesi, we cannot replacêx̂kx̂m& i

by ^x̂k& i^x̂m& i , etc. By applying the Cauchy-Schwarz in
equality as in the two-party derivation of Ref.@35#,

( i Pi^û& i
2>(( i Pi u^û& i u)2, we see that the last line in Eq.~18!

is bounded below by zero. Hence in order to pro

^(Dû)2&r1^(D v̂)2&r>(uhngnu1uhkgk1hmgmu)/2, it re-
e

mains to be shown that for anyi @recall that the mixture in
Eq. ~14! is a convex sum with( ih i51],

hk
2^~D x̂k!

2& i1hm
2 ^~D x̂m!2& i1hn

2^~D x̂n!2& i1gk
2^~D p̂k!

2& i

1gm
2 ^~D p̂m!2& i1gn

2^~D p̂n!2& i12hkhm~^ x̂kx̂m& i

2^ x̂k& i^x̂m& i !12gkgm~^ p̂kp̂m& i2^ p̂k& i^ p̂m& i !

>~ uhngnu1uhkgk1hmgmu!/2. ~19!

By rewriting the left-hand side of Eq.~19! in terms of vari-
ances only, indeed we find
5-5
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hn
2^~D x̂n!2& i1gn

2^~D p̂n!2& i1^@D~hkx̂k1hmx̂m!#2& i

1^@D~gkp̂k1gmp̂m!#2& i

>u^@hnx̂n ,gnp̂n#&u1u^@hkx̂k1hmx̂m ,gkp̂k1gmp̂m#&u

5~ uhngnu1uhkgk1hmgmu!/2, ~20!

using the sum uncertainty relation̂(DÂ)2&1^(DB̂)2&
>u^@Â,B̂#&u and @ x̂l ,p̂ j #5 id l j /2. Hence, the statements
Eq. ~15! with Eq. ~14! are proven for all permutations o
(k,m,n)5(1,2,3). The inequalities, Eq.~13! with Eq. ~15!
and Eq.~14!, represent necessary conditions for all kinds
~partial! separability in a tripartite three-mode state. One m
then prove the presence of genuine tripartite entanglem
through violations of these inequalities, thus ruling out a
~partially! separable form. Whether there are really three d
ferent conditions required for the verification, depends on
choice of the coefficientshl and gl in the linear combina-
tions. For a particular choice, some of the conditions m
coincide. For example, considerh15g151 and g25g3

52h252h351/A2 in Eq.~12!. In this case, the boundarie
in Eq. ~15! become identical for (k,m,n)5(1,2,3) and
(k,m,n)5(3,1,2), f (h1 ,h2 ,h3 ,g1 ,g2 ,g3)51/2. The bound-
ary of Eq. ~15! is even larger when (k,m,n)5(2,3,1),
f (h1 ,h2 ,h3 ,g1 ,g2 ,g3)51, equivalent to that for a fully
separable state in Eq.~16! with Eq. ~17!. Hence the violation
of a singlecondition,

^$D@ x̂12~ x̂21 x̂3!/A2#%2&r1^$D@ p̂11~ p̂21 p̂3!/A2#%2&r

>1/2, ~21!

is already sufficient for genuine tripartite entangleme
These particular combinations are not only significant for
reason that they yield nonzero boundaries for all kinds
separable states. Moreover, their commutator vanishes,

@ x̂12~ x̂21 x̂3!/A2,p̂11~ p̂21 p̂3!/A2#50, ~22!

allowing for arbitrarily good violations of Eq.~21! and, in
principle, the existence of a simultaneous eigenstate of th
two combinations. Such a state corresponds to the th
mode state obtainable by splitting one half of an infinite
squeezed two-mode squeezed~EPR! state at a 50:50 beam
splitter. The EPR correlations,x̂12 x̂2→0 and p̂11 p̂2→0,
are then transformed into the three-mode correlationsx̂1

2( x̂281 x̂38)/A2→0 and p̂11( p̂281 p̂38)/A2→0. Let us turn
to an arbitrary number of parties~modes! now.

VII. DETECTING ENTANGLEMENT:
MULTIPARTITE CASE

Inferring from the discussion of the preceding section,
recipe for verifying the genuine multipartite entangleme
between arbitrarily many parties and modes is the followi
First, measure both quadraturesx and p of all modes in-
volved and combine them in an appropriate linear combi
05231
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tion. The variances of these combinations may then yi
violations of conditions necessary for partial separabil
Appropriate combinations are those where the total varian
for all partially separable states have nonzero lower bou
and where the commutators of the combinations vanish.
for the derivation of the corresponding entanglement crite
we employ the following steps.

~1! Select a distinct pair of modes (m,n).
~2! Choose appropriate linear combinations of the quad

tures in order to rule out all possible separable splittin
between this pair of modes in the convex sum of the to
density operator.

~3! Consider different pairs (m,n) to negate all partial
separabilities; if necessary add further conditions involv
other linear combinations.

Below it will become clear that step~2! can be performed

simply by using the appropriate bipartite combinations,x̂m

2 x̂n and p̂m1 p̂n , i.e., by taking allhl5gl50 excepthm

5gm51 andhn52gn521 in the general combinations,

û[h1x̂11h2x̂21•••1hNx̂N ,

v̂[g1p̂11g2p̂21•••1gNp̂N . ~23!

The boundaries of the total variance conditions are then id
tical for any pair (m,n) separable in the convex sum
namely, f (hl ,gl)[1 in

^~Dû!2&r1^~D v̂ !2&r> f ~h1 ,h2 , . . . ,hN ,g1 ,g2 , . . . ,gN!.

~24!

However, in general, one obtains better multiparty conditio
when linear combinations for the quadratures of more th
only two modes are used. Through such multimode com
nations, the potential multimode correlations are taken i
account. Before giving an example, let us first derive
generalN-party bounds in the condition given in Eq.~24!.
For any partially separable form, the total density opera
can be written as

r̂5(
i

h i r̂ i ,kr ,•••,m^ r̂ i ,ks ,•••,n , ~25!

with a distinct pair of ‘‘separable modes’’ (m,n) and the
other modeskrÞks . For the combinations in Eq.~23!, we
find now
5-6
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^~Dû!2&r1^~D v̂ !2&r5(
i

h i~^û
2& i1^v̂2& i !2^û&r

22^v̂&r
2

5(
i

h iFhm
2 ^ x̂m

2 & i1hn
2^x̂n

2& i1 (
j 51

N22

hkj

2 ^x̂kj

2 & i1gm
2 ^ p̂m

2 & i1gn
2^ p̂n

2& i1 (
j 51

N22

gkj

2 ^ p̂kj

2 & i

1 (
j Þ j 851

N22

~hkj
hkj 8

^x̂kj
x̂kj 8

& i1gkj
gkj 8

^ p̂kj
p̂kj 8

& i !12 (
j 51

N22

~hkj
hm^x̂kj

x̂m& i1hkj
hn^x̂kj

x̂n& i

1gkj
gm^ p̂kj

p̂m& i1gkj
gn^ p̂kj

p̂n& i !12~hmhn^x̂mx̂n& i1gmgn^ p̂mp̂n& i !G2^û&r
22^v̂&r

2

5(
i

h iH hm
2 ^~D x̂m!2& i1hn

2^~D x̂n!2& i1gm
2 ^~D p̂m!2& i1gn

2^~D p̂n!2& i1 (
j 51

N22

~hkj

2 ^~D x̂kj
!2& i

1gkj

2 ^~D p̂kj
!2& i !1 (

rÞr 8
@hkr

hkr 8
~^ x̂kr

x̂kr 8
& i2^x̂kr

& i^x̂kr 8
& i !1gkr

gkr 8
~^ p̂kr

p̂kr 8
& i2^ p̂kr

& i^ p̂kr 8
& i !#

1 (
sÞs8

@hks
hks8

~^x̂ks
x̂ks8

& i2^x̂ks
& i^x̂ks8

& i !1gks
gks8

~^ p̂ks
p̂ks8

& i2^ p̂ks
& i^ p̂ks8

& i !#

12(
r

@hkr
hm~^x̂kr

x̂m& i2^x̂kr
& i^x̂m& i !1gkr

gm~^ p̂kr
p̂m& i2^ p̂kr

& i^ p̂m& i !#

12(
s

@hks
hn~^x̂ks

x̂n& i2^x̂ks
& i^x̂n& i !1gks

gn~^ p̂ks
p̂n& i2^ p̂ks

& i^ p̂n& i !#J
1(

i
h i^û& i

22S (
i

h i^û& i D 2

1(
i

h i^v̂& i
22S (

i
h i^v̂& i D 2

. ~26!

For the last equality, we exploited Eq.~25!, namely, modeskr throughm are separable from modesks throughn in the convex
sum of the total density operator. Similar to the three-party case, we can now apply the Cauchy-Schwarz inequality to
line of Eq. ~26! and express the remaining terms by variances only. This leads for anyi to

K FDS hmx̂m1(
r

hkr
x̂kr D G2L

i

1K FDS gmp̂m1(
r

gkr
p̂kr D G2L

i

1K FDS hnx̂n1(
s

hks
x̂ksD G2L

i

1K FDS gnp̂n1(
s

gks
p̂ksD G2L

i

>U K Fhmx̂m1(
r

hkr
x̂kr

,gmp̂m1(
r

gkr
p̂krG L U1U K Fhnx̂n1(

s
hks

x̂ks
,gnp̂n1(

s
gks

p̂ksG L U, ~27!
-

s

ing

-

he
using again the sum uncertainty relation̂(DÂ)2&
1^(DB̂)2&>u^@Â,B̂#&u. Thus, by evaluating the commuta
tors with @ x̂l ,p̂ j #5 id l j /2, we obtain for the total variance

^~Dû!2&r1^~D v̂ !2&r>
1

2 S Uhmgm1(
r

hkr
gkrU1Uhngn

1(
s

hks
gksU D . ~28!

Any additional splitting of the parties in the state
05231
i, r̂5( ih i r̂ i ,kr ,•••,m^ •••^ r̂ i ,kr 8
^ r̂ i ,ks ,•••,n^ •••^ r̂ i ,ks8

,

would in general make the bound larger, eventually yield
the bound for the fully separable state,( j uhjgj u/2 ( j
51, . . . ,N).

As mentioned previously, the well-known bipartite com

binations applied to modes (m,n), x̂m2 x̂n and p̂m1 p̂n ,
mean allhl5gl50 excepthm5gm51 andhn52gn521

in Eq. ~28! and hencê (Dû)2&r1^(D v̂)2&r>1.
As for a simple example, we may extend that from t

preceding section toN modes and seth15g151 and
5-7
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g2 5 g3 5 ••• 5 gN 5 2h2 5 2h35•••52hN51/AN21.
Without loss of generality, we choosem51 and obtain for a
state of the form given in Eq.~25!,

^~Dû!2&r1^~D v̂ !2&r>
1

2 S U12
Mr

N21U1U11Ms

N21 U D ,

~29!

whereMr is the number of modes potentially entangled w
mode m51 in the convex sum andMs is the number of
modes potentially entangled with moden in the convex sum.
Apart from the fully inseparable caseMr5N21, the bound-
ary in Eq. ~29! is always greater than zero, allowing for a
ultimate nonzero bound for all kinds of partial separabili
Since@ û,v̂#50, genuineN-party entanglement can be ver
fied when^(Dû)2&r1^(D v̂)2&r is sufficiently close to zero
The ultimate~smallest! bound is given by the state with th
maximum number of modesMr inseparable from modem
51 in the convex sum,Mr5N22, and henceMs50. This
bound is then 1/(N21). If none of the modes is inseparab
from modem51, Mr50 andMs5N22, the boundary be-
comes simply that of a fully separable state, namely 1. Th
again the violation of asinglecondition,

^$D@ x̂12~ x̂21 x̂31•••1 x̂N!/AN21#%2&r

1^$D@ p̂11~ p̂21 p̂31•••1 p̂N!/AN21#%2&r

>1/~N21!, ~30!

is sufficient for genuineN-partite entanglement. As an ex
ample for the violation of the ultimate bound for genui
N-party entanglement, consider theN-mode state tha

FIG. 1. Verification of genuine tripartite CV entanglement.x
measurements: directly detecting thex quadratures of all three
modes and electronically combining them in an appropriate w
The three-mode tripartite entangled state of modes 1, 2, and
this figure is produced with three squeezers and two beam spli
~the star denotes a 1:2 BS!.
05231
.

s,

emerges after symmetrically splitting one half of an infinite
squeezed two-mode squeezed state byN22 beam splitters.

The output state is a simultaneous eigenstate ofû and v̂. In

this case, the EPR correlations,x̂12 x̂2→0 andp̂11 p̂2→0,

are transformed into theN-mode correlationsx̂12( x̂281 x̂38

1•••1 x̂N8 )/AN21→0 and p̂11( p̂281 p̂381•••

1 p̂N8 )/AN21→0. As a further example, we will now dis
cuss the CV GHZ-type states with quadrature correlati
analogous to those of DV GHZ states.

VIII. EXAMPLE: CV GHZ-TYPE STATES

We consider a family of genuinelyN-party entangled
states. The members of this family are those states
emerge from a particular sequence ofN21 phase-free beam
splitters~‘‘ N splitter’’! with N squeezed state inputs@11#. By
choosing the squeezing direction of one distinct input mo
orthogonal to that of the remaining input modes~mode 1
squeezed inp and the other modes squeezed inx, as shown
in Figs. 1 and 2 forN53) and the degree of squeezing byr 1
of mode 1 potentially different from that of the other mod
~which are equally squeezed byr 2) @39#, the output states
have the following properties@18,19#. These are pure
N-mode states, totally symmetric under interchange
modes, and retain the Gaussian character of the input st
Hence, they are entirely described by their second-mom
correlation matrix

y.
in
rs

FIG. 2. Verification of genuine tripartite CV entanglement.p
measurements: directly detecting thep quadratures of all three
modes and electronically combining them in an appropriate w
The three-mode tripartite entangled state of modes 1, 2, and
this figure is produced with three squeezers and two beam split
The parametersgi are the ‘‘gains’’ from the conditions in Eq.~37!
which can be chosen optimally~see the text later!.
5-8
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V(N)5
1

4S a 0 c 0 c 0 •••

0 b 0 d 0 d •••

c 0 a 0 c 0 •••

0 d 0 b 0 d •••

c 0 c 0 a 0 •••

0 d 0 d 0 b •••

A A A A A A A

D , ~31!

where

a5
1

N
e12r 11

N21

N
e22r 2,

b5
1

N
e22r 11

N21

N
e12r 2,

c5
1

N
~e12r 12e22r 2!,

d5
1

N
~e22r 12e12r 2!. ~32!

For squeezed vacuum inputs, the multimode output st
have zero mean and their Wigner function is of the fo
given in Eq.~1!. The particularly simple form of the corre
lation matrix in Eq.~31! is, in addition to the general corre
lation matrix properties, symmetric with respect to all mod
and contains no intermode or intramodex-p correlations
~hence, only four parametersa, b, c, and d are needed to
determine the matrix!. However, the states of this form ar
in general, biased with respect tox andp (aÞb). Only for a
particular relation between the squeezing values (r 1 ,r 2)
@18,19#,

e62r 15~N21!sinh 2r 2FA11
1

~N21!2sinh22r 2

61G ,

~33!

the states are unbiased~all diagonal entries of the correlatio
matrix being equal!, thus having minimum energy at a give
degree of entanglement or, in other words, maximum
tanglement for a given mean photon number@39#. The other
N-mode states of the family can be converted into
minimum-energy state via local squeezing operatio
@18,19,39#. Only for N52, we obtainr 5r 15r 2. In this
case, the matrixV(N) reduces to that of a two-mode squeez
state which is the maximally entangled state of two mode
a given mean energy with the correlation matrix entriesa
5b5cosh 2r and c5sinh 2r52d. For generalN, the first
squeezer withr 1 and theN21 remaining squeezers withr 2
have different squeezing. In the limit of large squeez
(sinh 2r2'e12r2/2), we obtain approximately@18,19#

e12r 1'~N21!e12r 2. ~34!
05231
es

s

-

e
s

at

g

For the whole family ofN-partyN-mode states with the cor
relation matrix in Eq.~31!, the quadrature combinations re
evant for detecting genuine multiparty entanglement
@11,18,19#

^@D~ x̂m2 x̂n!#2&5e22r 2/2,

K FDS p̂m1 p̂n1g(N) (
j Þm,n

N

p̂j D G2L
5

@21~N22!g(N)#2

4N
e22r 1

1
~g(N)21!2~N22!

2N
e12r 2. ~35!

The total variances are then optimized~minimized! for

gopt
(N)5

e12r 22e22r 1

e12r 21
N22

2
e22r 1

. ~36!

In the limit of infinite squeezing,r 1 ,r 2→`, the above cor-
relations correspond to a simultaneous eigenstate of the
tive positions and the total momentum such as the CV G
states in Eq.~9!.

Let us now examine how to experimentally verify th
genuine multipartite entanglement of the CV GHZ-ty
states~in any case, it may be verified in an operational w
by doing quantum teleportation between every pair of par
with the help of the remaining party@11#!. Due to experimen-
tal imperfections, we may assume that the entanglemen
slightly degraded approximate versions of the states, ge
ated according to a scheme as in Figs. 1 and 2, is to
verified. We start again with only three parties and mod
For a simple check, look at the following set of inequalitie

I ^@D~ x̂12 x̂2!#2&1^@D~ p̂11 p̂21g3p̂3!#2&>1,

II ^@D~ x̂22 x̂3!#2&1^@D~g1p̂11 p̂21 p̂3!#2&>1,

III ^@D~ x̂12 x̂3!#2&1^@D~ p̂11g2p̂21 p̂3!#2&>1.
~37!

On the left-hand side~lhs! of condition I we haveh1
52h25g15g251 andh350, and hence the boundary fo
the total variance in Eq.~13! with Eq. ~15! and Eq. ~14!
becomes 1 for (k,m,n)5(3,1,2) and (k,m,n)5(2,3,1), but
zero for (k,m,n)5(1,2,3). Similarly, using the left-hand
side of condition II whereh252h35g25g351 and h1
50, the boundary is 1 for (k,m,n)5(1,2,3) and (k,m,n)
5(3,1,2), but zero for (k,m,n)5(2,3,1). Finally, the lhs of
condition III with h152h35g15g351 and h250 corre-
sponds to a boundary of 1 for (k,m,n)5(1,2,3) and
(k,m,n)5(2,3,1), but zero for (k,m,n)5(3,1,2). Thus, the
following statements for~at least partially! separable state
hold,
5-9
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r̂5(
i

h i r̂ i ,12^ r̂ i ,3 , ⇒II and III,

r̂5(
i

h i r̂ i ,13^ r̂ i ,2 ⇒I and II,

r̂5(
i

h i r̂ i ,23^ r̂ i ,1 ⇒I and III. ~38!

The conditions in Eq.~37! are necessary for different kind
of partial separability. As a result, the violation ofany pairof
inequalities in Eq.~37! is sufficient for genuine three-part
three-mode entanglement. Violating only one condition
Eq. ~37! ~for example, condition I! means that the total den
sity operator cannot be written in two of the three forms
Eq. ~38! ~for example, neither in the formr̂5( ih i r̂ i ,13

^ r̂ i ,2 nor in the formr̂5( ih i r̂ i ,23^ r̂ i ,1). Using the classi-
fication of Ref. @30#, the classes 3@two-mode biseparable
states expressible in two of the three forms in Eq.~38!#, 4
@three-mode biseparable states expressible in all of the t
forms in Eq.~38!#, and 5@fully separable states describab
by Eq. ~16!# are then ruled out. The forms of the classes
~fully inseparable states! and 2@one-mode biseparable stat
expressible in one of the three forms in Eq.~38!# remain both
possible. In our example with the violation of condition I, th
state might be genuinely tripartite entangled or of the p
tially separable formr̂5( ih i r̂ i ,12^ r̂ i ,3 . Eventually, the vio-
lation of a second inequality in Eq.~37! ~for instance, con-
dition II! negates also the only remaining partially separa
form ~e.g., r̂5( ih i r̂ i ,12^ r̂ i ,3), thus proving the full insepa
rability of the state@40#. Note that even though pure an
totally symmetric multiparty entangled states are alwa
genuinely multipartite entangled@18,19#, asymmetric pure or
mixed entangled three-mode states~e.g., from class 2 in Ref
@30#, the product state of a bipartite entangled two-mo
squeezed state and a vacuum state! and symmetric mixed
entangled three-mode states~like the example for the three
mode biseparable class, class 4, given in Ref.@30#! do not
automatically exhibit genuine tripartite entanglement. Due
the violation of two conditions in Eq.~37!, the two loop-
holes of partial separability, mixedness and/or asymme
are ruled out.

The criteria here are only sufficient for full inseparabili
and hence genuinely tripartite entangled states may also
isfy all the conditions in Eq.~37! ~an example will be men-
tioned later!. On the other hand, note that we did not use
assumption of Gaussian states. The derivation of the co
tions relies only on the Cauchy-Schwarz inequality a
Heisenberg’s~sum! uncertainty relation.

Alternatively, one could simply check the known biparti
separability conditions@35# for pairs of modes, i.e.,g15g2
5g350 in Eq. ~37! ~or using products of variances@38#
instead of sums!. Again, the statements of Eq.~38! hold.
Hence, two violations again verify genuine tripartite e
tanglement. However, the significance of the more gen
conditions in Eq.~37! compared to those withg15g25g3
50 is that for the CV GHZ-type states, as discussed la
the former canalwaysbe violated for any degree of multi
party entanglement and the violations can steadily grow fr
small towards ‘‘perfect’’~that is all variances of the comb
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nations zero! as the three-mode entanglement increases
contrast, the bipartite conditions withg15g25g350 may
be violated for bad three-mode entanglement~small squeez-
ing! and satisfied for larger squeezing, thus not always v
fying genuine tripartite entanglement, and, in particul
never verifying good genuine tripartite entanglement. Mo
over, they might be always violated, but the violations do n
attain a significant amount~e.g., three-mode states mad
from one squeezed state@18,19#!. Similarly, using products
of variances@38# instead of sums in Eq.~37! with g15g2
5g350, violations may always occur, but also only to
certain extent@18,19#. In Figs. 1 and 2, it is shown how to
apply the tripartite entanglement criteria experimentally
ing homodyne detectors.

Let us also discuss the conditions for theN54 case in
more detail. We consider the following set of six inequalitie

I ^@D~ x̂12 x̂2!#2&1^@D~ p̂11 p̂21g3p̂31g4p̂4!#2&>1,

II ^@D~ x̂22 x̂3!#2&1^@D~g1p̂11 p̂21 p̂31g4p̂4!#2&>1,

III ^@D~ x̂12 x̂3!#2&1^@D~ p̂11g2p̂21 p̂31g4p̂4!#2&>1,

IV ^@D~ x̂32 x̂4!#2&1^@D~g1p̂11g2p̂21 p̂31 p̂4!#2&>1,

V ^@D~ x̂22 x̂4!#2&1^@D~g1p̂11 p̂21g3p̂31 p̂4!#2&>1,

VI ^@D~ x̂12 x̂4!#2&1^@D~ p̂11g2p̂21g3p̂31 p̂4!#2&>1.
~39!

The position and momentum variablesx̂l and p̂l are the
quadratures of four electromagnetic modes this time. Thegl
are again arbitrary real parameters. Now the following sta
ments for~at least partially! separable states hold,

r̂5(
i

h i r̂ i ,123̂ r̂ i ,4 ⇒IV, V, and VI,

r̂5(
i

h i r̂ i ,124̂ r̂ i ,3 ⇒II, III, and IV,

r̂5(
i

h i r̂ i ,134̂ r̂ i ,2 ⇒I, II, and V,

r̂5(
i

h i r̂ i ,234̂ r̂ i ,1 ⇒I, III, and VI ~40!

and

r̂5(
i

h i r̂ i ,12^ r̂ i ,34 ⇒II, III, V, and VI,

r̂5(
i

h i r̂ i ,13^ r̂ i ,24 ⇒I, II, IV, and VI,

r̂5(
i

h i r̂ i ,14^ r̂ i ,23 ⇒I, III, IV, and V. ~41!
5-10
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Note that again the fully separable state,r̂5( ih i r̂ i ,1^ r̂ i ,2

^ r̂ i ,3^ r̂ i ,4 , is included and as well states such asr̂

5( ih i r̂ i ,km^ r̂ i ,l ^ r̂ i ,n . The above statements can be eas
confirmed using Eq.~28! for states of the general form
given in Eq. ~25!. The different forms here arer̂5

( ih i r̂ i ,klm^ r̂ i ,n including r̂5( ih i r̂ i ,kl ^ r̂ i ,m^ r̂ i ,n , and r̂

5( ih i r̂ i ,km^ r̂ i ,ln including r̂5( ih i r̂ i ,km^ r̂ i ,l ^ r̂ i ,n , with
the two modesm and n always being separable. For th
combinationsû5 x̂m2 x̂n and v̂5gkp̂k1gl p̂l1 p̂m1 p̂n , the
boundary of the total variance is always 1. The statement
Eqs. ~40! and ~41! become obvious then, by considering a
possible pairs of modes (m, n) of the four modes (k,l ,m,n).
Note that always when the two modes (m, n) are potentially
entangled, the boundary for the total variance drops to z

What kind of violations of the six inequalities in Eq.~39!
are now sufficient to verify the full inseparability of a fou
mode, four-party state? The violations must rule out any
the partially separable forms in Eqs.~40! and~41!. Let us, for
example, consider violations of the inequalities IV and
These violations mean that all partially separable forms
Eqs. ~40! and ~41! are excluded except for the formr̂
5( ih i r̂ i ,234̂ r̂ i ,1 in Eq. ~40!. In order to negate this form a
well a further violation is needed. According to Eq.~40!, one
of the inequalities I, III, or VI should be violated in addition
Here it is important to realize that the conditions IV and V
not involve thex quadrature of mode 1, but that of all th
other modes. The additional test via any one of the con
tions I, III, or VI of which all contain both quadratures o
mode 1, eventually provides the missing information ab
mode 1. Hence we learn that three conditions are suffic
here to verify the full inseparability of a four-mode, fou
party state. We may choose

^@D~ x̂12 x̂2!#2&1^@D~ p̂11 p̂21g3p̂31g4p̂4!#2&,1,

^@D~ x̂22 x̂3!#2&1^@D~g1p̂11 p̂21 p̂31g4p̂4!#2&,1,

^@D~ x̂32 x̂4!#2&1^@D~g1p̂11g2p̂21 p̂31 p̂4!#2&,1,
~42!

which involve both quadraturesx and p of all four modes.
Note that apart from the coefficientsgl , these four combina-
tions correspond to those observables measured in a
party CV GHZ state analyzer. Correspondingly, forN parties
and modes, we may choose the followingN21 conditions in
terms of effectiveN combinations~those of anN-party
N-mode CV GHZ state analyzer!:

^@D~ x̂12 x̂2!#2&1^@D~ p̂11 p̂21g3p̂31•••1gNp̂N!#2&,1,

^@D~ x̂22 x̂3!#2&

1^@D~g1p̂11 p̂21 p̂31g4p̂41•••1gNp̂N!#2&,1,

A A A A A A A
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^@D~ x̂N212 x̂N!#2&

1^@D~g1p̂11g2p̂21•••1gN22p̂N221 p̂N211 p̂N!#2&

,1. ~43!

These conditions are sufficient to verify the full inseparab
ity ~genuineN-party entanglement! of an N-party N-mode
state. For an arbitraryN, the proof relies on the fact that in
any partially separable form, we may always select a dist
pair of modes (m,n) that are separable in the statesi of the
convex sum of the density operator. Only exploiting th
modesm andn are separable, the combinations

û5 x̂m2 x̂n , v̂5 (
j 51

N22

gkj
p̂kj

1 p̂m1 p̂n ~44!

always yield a boundary of 1 for the total variance using E
~28! for states of the general form given in Eq.~25!. By
taking the pairs of modes (1,2), (2,3),. . . , (N21,N) for
(m, n), all partially separable forms of the total density o
erator are covered~as demonstrated explicitly forN54) and
hence theN21 conditions in Eq.~43! are sufficient for
genuineN-party,N-mode inseparability.

The left-hand sides of the inequalities in Eq.~43! are
shown in Fig. 3 for various CV GHZ-typeN-mode states,
differing in the relation between the squeezingr 1 and r 2
@Eqs.~31!, ~32!, and~35!#. Due to the total symmetry of al
these states, the left-hand sides of the conditions in Eq.~43!
become equal for all conditions~assuminggj[g(N)). Hence,
values below the boundary 1, here mean all inequalities
Eq. ~43! are satisfied: thus, indicating genuineN-party en-
tanglement. In all these cases, in Fig. 3, the optimal coe
cientsgj[gopt

(N) from Eq. ~36! are used to minimize the tota
variances of Eq.~35!. If N530, only for the unbiased state
the conditions are always met~for any nonzero squeezing
r .0) and the total variances tend to zero for large sque
ing. Moreover, for the same squeezingr, the unbiased state
with N530 drop below the boundary 1 to a greater exte

FIG. 3. Plot of the left-hand sides~total variance! of the condi-
tions in Eq.~43! for different N-mode states with quadrature corr
lations given by Eq.~35! and different numbers of partiesN53 and
N530. The states are those produced with one squeezed state~dot-
ted lines with r 250 and r 5r 1), those made fromN equally
squeezed states~dashed lines withr 5r 15r 2), and the unbiased
minimum-energy states with squeezingr 1 and r 5r 2 related as in
Eq. ~33!.
5-11
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than their unbiased tripartite counterparts. In contrast, for
biased states~those with only one squeezer,r 250 and r
5r 1, and those withN equally squeezed states,r 5r 1
5r 2), the total variances approach or even exceed
boundary 1 as the number of parties grows. The exampl
the states withN equal squeezers also demonstrates that th
are Gaussian states that are indeed genuinelyN-party en-
tangled, but do not satisfy any of the conditions in Eq.~43!.
It can be shown, however, taking into account the symme
and purity of the whole family ofN-mode states~including
those withN equal squeezers! that all these states are gen
inely multiparty entangled for any nonzero squeez
@18,19#.

Finally, we emphasize that one may use other conditi
too for verifying the genuine multipartite entanglement
the CV GHZ-type states. Even a single condition might
again sufficient. For example, consider the combinationû

52x̂12( x̂21 x̂3) and v̂5 p̂11 p̂21 p̂3 for three modes. We
have @ û,v̂#50, and indeed the GHZ-type three-mode st
becomes a simultaneous eigenstate ofû andv̂ in the limit of
infinite squeezing,r 1 ,r 2→`. The boundaries of the tota
variance for these combinations take on the value 1 w
r̂5( ih i r̂ i ,12^ r̂ i ,3 or r̂5( ih i r̂ i ,13^ r̂ i ,2 , and the value 2
~corresponding to the fully separable state! when r̂

5( ih i r̂ i ,23^ r̂ i ,1 . Hence ^(Dû)2&r1^(D v̂)2&r,1 is suffi-
cient for genuine tripartite entanglement. The number
measurements required, however, remain the same as fo
criteria above expressed byN21 conditions. In any case
both quadratures of all modes must be detected and c
bined in an appropriate way.

IX. CONCLUSIONS

In summary, we proposed experimental criteria to det
genuine multipartite continuous-variable entangleme
These are expressed in terms of the variances of partic
combinations of all the quadratures involved. The combi
tions are measurable with only a few simple homodyne
tections. For Gaussian states, it is then not necessary to
termine the entire correlation matrix in order to confirm t
genuine multipartite entanglement. Furthermore, the co
tions here do not rely on the assumption of Gaussian sta
es

et
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In fact, in the two-party two-mode case, for instance, a
state with a correlation matrix corresponding to an entang
Gaussian state is itself entangled, too@28#. An experimental
confirmation of the Gaussian character of the state in qu
tion is therefore not needed either. Finally, we examined
applicability of the conditions to a particular GHZ-type cla
of genuinely multiparty entangled states. These states ar
the Gaussian form, they are totally symmetric under
change of modes, and they have zero cross correlations
tween thex and thep quadratures. If they are, in addition
unbiased between thex and thep quadratures, they alway
~for any nonzero entanglement! satisfy the conditions in
terms of appropriately chosen linear combinations. In
limit of perfect entanglement, the variances of the combi
tions tend to zero for the unbiased states, and the condit
are perfectly met.

In an experiment, one normally has approximatea priori
knowledge about the state to be analyzed. According to tha
priori knowledge, one can then choose appropriate lin
combinations to be measured. It would be desirable to kn
whether there is always, for any given multiparty, multimo
state, a single optimal condition to verify its genuine mul
partite entanglement and how to constructively derive t
condition. Inferring from the results here, such a conditi
may always exist and the corresponding linear combinati
must contain both quadratures of all modes with optimiz
coefficientshl andgl . A possible approach to this question
in terms of so-called entanglement witnesses@26,41#. One
may then interpret the inequalities for the total variances
quantum expectation values of Hermitian operators wh
take on negative values when they witness some kind
partial inseparability.
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